Skip to main content
Log in

A Budget Analysis of Bottom-Water Dissolved Oxygen in Chesapeake Bay

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

A coupled hydrodynamic-dissolved oxygen model is developed to simulate the seasonal cycle of dissolved oxygen (DO) in Chesapeake Bay and investigate processes regulating summer hypoxia in the estuary. A budget analysis of DO in the bottom water reveals a balance between physical transport and biological consumption. In addition to the vertical diffusive flux, the longitudinal and vertical advective fluxes are important suppliers of DO to the bottom water. The longitudinal advective flux is affected not only by gravitational circulation but also by wind-driven currents. The vertical advective flux is affected by wind-driven lateral circulation and shows a strong dependence on wind speed and direction. Up-estuary winds weaken the landward bottom flow and generate a clockwise lateral circulation that exchanges DO between the deep channel and adjacent shoals, thereby reducing the longitudinal advective flux and increasing the vertical advective flux. In contrast, down-estuary winds amplify the longitudinal flux and reduce the vertical flux. During the summer, water column respiration contributes to about 74 % of the total biological consumption and sediment oxygen demand accounts for about 26 %. Sensitivity analysis model runs are conducted to analyze how changing river flows and winds affect the hypoxia prediction and oxygen budget balance. Due to the compensating changes in longitudinal and vertical fluxes, the hypoxic volume is relatively insensitive to changes in the river flow. In contrast, the timing and size of hypoxic volume changes with wind speed. Sensitivity analysis also shows that plankton oxygen production, water column respiration, and sediment oxygen demand all affect the hypoxia prediction and bottom oxygen balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Benoit, P., Y. Gratton, and A. Mucci. 2006. Modeling of dissolved oxygen levels in the bottom waters of the Lower St. Lawrence Estuary: coupling of benthic and pelagic processes. Marine Chemistry 102: 13–32. doi:10.1016/j.marchem.2005.09.015.

    Article  CAS  Google Scholar 

  • Bever, A.J., M.A. Friedrichs, C.T. Friedrichs, M.E. Scully, and L.W. Lanerolle. 2013. Combining observations and numerical model results to improve estimates of hypoxic volume within the Chesapeake Bay, USA. Journal of Geophysical Research-Oceans 118: 4924–4944. doi:10.1002/jgrc.20331.

    Article  Google Scholar 

  • Boicourt, W.C. (1992). Influences of circulation processes on dissolved oxygen in the Chesapeake Bay.

  • Boynton, W.R., and Bailey, W. 2008. Sediment oxygen and nutrient exchange measurements from Chesapeake Bay, tributary rivers and Maryland coastal bays: development of a comprehensive database & analysis of factors controlling patterns and magnitude of sediment-water exchanges University of Maryland Center for Environmental Science, [UMCES]CBL 08–019.

  • Browne, D.R., and Fisher, C.W. 1988. Tide and tidal currents in the Chesapeake Bay: US Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Office of Oceanography and Marine Assessment.

  • Cerco, C.F. 1995. Response of Chesapeake Bay to nutrient load reductions. Journal of Environmental Engineering 121: 549. doi:10.1061/(ASCE)0733-9372(1995)121:8(549).

    Article  CAS  Google Scholar 

  • Cerco, C.F. 2000. Phytoplankton kinetics in the Chesapeake Bay eutrophication model. Water Quality and Ecosystems Modeling 1: 5–49. doi:10.1023/A:1013964231397.

    Article  Google Scholar 

  • Cerco, C.F., and Cole, T.M. 1994. Three-dimensional eutrophication model of Chesapeake Bay. Volume 1: Main Report: DTIC Document.

  • Cheng, P., M. Li, and Y. Li. 2013. Generation of an estuarine sediment plume by a tropical storm. Journal of Geophysical Research-Oceans 118: 856–868. doi:10.1002/jgrc.20070.

    Article  Google Scholar 

  • Codiga, D.L. 2012. Density stratification in an estuary with complex geometry: driving processes and relationship to hypoxia on monthly to inter‐annual timescales. Journal of Geophysical Research-Oceans 117. doi:10.1029/2012JC008473.

  • Codiga, D.L., H.E. Stoffel, C.F. Deacutis, S. Kiernan, and C.A. Oviatt. 2009. Narragansett Bay hypoxic event characteristics based on fixed-site monitoring network time series: intermittency, geographic distribution, spatial synchronicity, and interannual variability. Estuaries and coasts 32: 621–641. doi:10.1007/s12237-009-9165-9.

    Article  CAS  Google Scholar 

  • Cowan, J.L.W., and W.R. Boynton. 1996. Sediment-water oxygen and nutrient exchanges along the longitudinal axis of Chesapeake Bay: seasonal patterns, controlling factors and ecological significance. Estuaries 19: 562–580. doi:10.2307/1352518.

    Article  CAS  Google Scholar 

  • Diaz, R.J. 2001. Overview of hypoxia around the world. Journal of Environmental Quality 30: 275–281. doi:10.2134/jeq2001.302275x.

    Article  CAS  Google Scholar 

  • Diaz, R.J., and R. Rosenberg. 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology Annual Review 33: 245–303.

    Google Scholar 

  • Dortch, Q., N.N. Rabalais, R.E. Turner, and G.T. Rowe. 1994. Respiration rates and hypoxia on the Louisiana shelf. Estuaries 17: 862–872. doi:10.2307/1352754.

    Article  CAS  Google Scholar 

  • Egbert, G.D., and S.Y. Erofeeva. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology 19: 183–204.

    Article  Google Scholar 

  • Egbert, G.D., A.F. Bennett, and M.G.G. Foreman. 1994. TOPEX/POSEIDON tides estimated using a global inverse model.

  • Fairall, C., E. Bradley, J. Hare, A. Grachev, and J. Edson. 2003. Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. Journal of Climate 16: 571–591. doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    Article  Google Scholar 

  • Feng, Y., K. Fennel, G.A. Jackson, S.F. DiMarco, and R.D. Hetland. 2014. A model study of the response of hypoxia to upwelling-favorable wind on the northern Gulf of Mexico shelf. Journal of Marine Systems 131: 63–73. doi:10.1016/j.jmarsys.2013.11.009.

    Article  Google Scholar 

  • Fisher, T.R., A.B... Gustafson, G.M. Radcliffe, K.L. Sundberg, and J.C. Stevenson. 2003. A long-term record of photosynthetically available radiation (PAR) and total solar energy at 38.6°N, 78.2°W. Estuaries and coasts 26: 1450–1460. doi:10.1007/BF02803653.

  • García, H.E., and L.I. Gordon. 1992. Oxygen solubility in seawater: better fitting equations. Limnology and oceanography 37: 1307–1312. doi:10.4319/lo.1992.37.6.1307.

    Article  Google Scholar 

  • Gilbert, D., B. Sundby, C. Gobeil, A. Mucci, and G.-H. Tremblay. 2005. A seventy-two-year record of diminishing deep-water oxygen in the St. Lawrence estuary: The northwest Atlantic connection. Limnology and oceanography 50: 1654–1666. doi:10.4319/lo.2005.50.5.1654.

    CAS  Google Scholar 

  • Hagy, J.D., W.R. Boynton, C.W. Keefe, and K.V. Wood. 2004. Hypoxia in Chesapeake Bay, 1950–2001: long-term change in relation to nutrient loading and river flow. Estuaries 27: 634–658. doi:10.1007/BF02907650.

    Article  CAS  Google Scholar 

  • Haidvogel, D.B., H. Arango, W.P. Budgell, B.D. Cornuelle, E. Curchitser, E. Di Lorenzo, K. Fennel, W.R. Geyer, A.J. Hermann, and L. Lanerolle. 2008. Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the Regional Ocean Modeling System. Journal of Computational Physics 227: 3595–3624. doi:10.1016/j.jcp.2007.06.016.

    Article  Google Scholar 

  • Hetland, R.D., and S.F. DiMarco. 2008. How does the character of oxygen demand control the structure of hypoxia on the Texas-Louisiana continental shelf? Journal of Marine Systems 70: 49–62. doi:10.1016/j.jmarsys.2007.03.002.

    Article  Google Scholar 

  • Kemp, W.M., P.A. Sampou, J. Garber, J. Tuttle, and W.R. Boynton. 1992. Seasonal depletion of oxygen from bottom waters of Chesapeake Bay—roles of benthic and planktonic respiration and physical exchange processes. Marine Ecology-Progress Series 85: 137–152.

    Article  CAS  Google Scholar 

  • Kemp, W.M., J.M. Testa, D.J. Conley, D. Gilbert, and J.D. Hagy. 2009. Temporal responses of coastal hypoxia to nutrient loading and physical controls. Biogeosciences 6: 2985–3008. doi:10.5194/bg-6-2985-2009.

    Article  CAS  Google Scholar 

  • Kuo, A.Y., and B.J. Neilson. 1987. Hypoxia and salinity in Virginia estuaries. Estuaries 10: 277–283. doi:10.2307/1351884.

    Article  CAS  Google Scholar 

  • Lee, Y.J., W.R. Boynton, M. Li, and Y. Li. 2013. Role of late winter–spring wind influencing summer hypoxia in Chesapeake Bay. Estuaries and coasts 36: 683–696. doi:10.1007/s12237-013-9592-5.

    Article  CAS  Google Scholar 

  • Lefort, S., Y. Gratton, A. Mucci, I. Dadou, and D. Gilbert. 2012. Hypoxia in the Lower St. Lawrence Estuary: how physics controls spatial patterns. Journal of Geophysical Research-Oceans 117: C07018. doi:10.1029/2011JC007751.

    Google Scholar 

  • Lerczak, J.A., and W.R. Geyer. 2004. Modeling the lateral circulation in straight, stratified estuaries. Journal of Physical Oceanography 34: 1410–1428. doi:10.1175/1520-0485(2004)0342.0.CO;2.

    Article  Google Scholar 

  • Levitus, S., U.S.N. Oceanic, and A. Administration. 1982. Climatological atlas of the world ocean: US Department of Commerce, National Oceanic and Atmospheric Administration.

  • Li, Y., and M. Li. 2011. Effects of winds on stratification and circulation in a partially mixed estuary. Journal of Geophysical Research-Oceans 116: 12012. doi:10.1029/2010JC006893.

    Article  Google Scholar 

  • Li, Y., and M. Li. 2012. Wind-driven lateral circulation in a stratified estuary and its effects on the along-channel flow. Journal of Geophysical Research-Oceans 117: 9005. doi:10.1029/2011JC007829.

    Article  Google Scholar 

  • Li, M., and L.J. Zhong. 2009. Flood-ebb and spring-neap variations of mixing, stratification and circulation in Chesapeake Bay. Continental Shelf Research 29: 4–14. doi:10.1016/j.csr.2007.06.012.

    Article  Google Scholar 

  • Li, M., L. Zhong, and W. Boicourt. 2005. Simulations of Chesapeake Bay estuary: sensitivity to turbulence mixing parameterizations and comparison with observations. Journal of Geophysical Research-Oceans 110, C12004. doi:10.1029/2004JC002585.

    Article  Google Scholar 

  • Li, M., L.J. Zhong, W.C. Boicourt, S.L. Zhang, and D.L. Zhang. 2007. Hurricane-induced destratification and restratification in a partially-mixed estuary. Journal of Marine Research 65: 169–192.

    Google Scholar 

  • Li, M., L. Zhong, and L.W. Harding. 2009. Sensitivity of plankton biomass and productivity to variations in physical forcing and biological parameters in Chesapeake Bay. Journal of Marine Research 67: 667–700. doi:10.1357/002224009791218878.

    Article  Google Scholar 

  • MacCready, P., and W.R. Geyer. 2010. Advances in estuarine physics. Annual Review of Marine Science 2: 35–58. doi:10.1146/annurev-marine-120308-081015.

    Article  Google Scholar 

  • Malone, T.C., W.M. Kemp, H.W. Ducklow, W.R. Boynton, J.H. Tuttle, and R.B. Jonas. 1986. Lateral variation in the production and fate of phytoplankton in a partially stratified estuary. Marine Ecology-Progress Series 32: 149–160.

    Article  Google Scholar 

  • Marchesiello, P., J. McWilliams, and A. Shchepetkin. 2001. Open boundary conditions for long-term integration of regional oceanic models. Ocean Modelling 3: 20. doi:10.1016/S1463-5003(00)00013-5.

    Article  Google Scholar 

  • Mesinger, F., G. DiMego, E. Kalnay, K. Mitchell, P.C. Shafran, W. Ebisuzaki, D. Jovic, J. Woollen, E. Rogers, and E.H. Berbery. 2006. North American regional reanalysis. Bulletin of the American Meteorological Society 87: 343–360. doi:10.1175/BAMS-87-3-343.

    Article  Google Scholar 

  • Murrell, M.C., and J.C. Lehrter. 2011. Sediment and lower water column oxygen consumption in the seasonally hypoxic region of the Louisiana continental shelf. Estuaries and coasts 34: 912–924. doi:10.1007/s12237-010-9351-9.

    Article  CAS  Google Scholar 

  • O’Donnell, J., H.G. Dam, W.F. Bohlen, W. Fitzgerald, P.S. Gay, A.E. Houk, D.C. Cohen, and M.M. Howard-Strobel. 2008. Intermittent ventilation in the hypoxic zone of western Long Island Sound during the summer of 2004. Journal of Geophysical Research-Oceans 113: 9025. doi:10.1029/2007JC004716.

    Article  Google Scholar 

  • Officer, C., R. Biggs, J. Taft, L. Cronin, M. Tyler, and W. Boynton. 1984. Chesapeake Bay anoxia: origin, development, and significance. Science 223: 22. doi:10.1126/science.223.4631.22.

    Article  CAS  Google Scholar 

  • Quiñones-Rivera, Z.J., B. Wissel, D. Justic, and B. Fry. 2007. Partitioning oxygen sources and sinks in a stratified, eutrophic coastal ecosystem using stable oxygen isotopes. Marine Ecology Progress Series 342: 69–83.

    Article  Google Scholar 

  • Sampou, P., and W.M. Kemp. 1994. Factors regulating plankton community respiration in Chesapeake Bay. Marine Ecology-Progress Series 110: 249–258.

    Article  Google Scholar 

  • Sanford, L.P., and W.C. Boicourt. 1990. Wind-forced salt intrusion into a tributary estuary. Journal of Geophysical Research-Oceans 95: 13357–13371. doi:10.1029/JC095iC08p13357.

    Article  Google Scholar 

  • Scully, M.E. 2010a. The importance of climate variability to wind-driven modulation of hypoxia in Chesapeake Bay. Journal of Physical Oceanography 40: 1435–1440. doi:10.1175/2010JPO4321.1.

    Article  Google Scholar 

  • Scully, M.E. 2010b. Wind modulation of dissolved oxygen in Chesapeake Bay. Estuaries and coasts 33: 1164–1175. doi:10.1007/s12237-010-9319-9.

    Article  CAS  Google Scholar 

  • Scully, M.E. 2013. Physical controls on hypoxia in Chesapeake Bay: a numerical modeling study. Journal of Geophysical Research-Oceans: 1–18. doi:10.1002/jgrc.20138.

  • Shchepetkin, A.F., and J.C. McWilliams. 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling 9: 347–404. doi:10.1016/j.ocemod.2004.08.002.

    Article  Google Scholar 

  • Shchepetkin, A.F., and J.C. McWilliams. 2009a. Computational kernel algorithms for fine-scale, multi-process, long-time oceanic simulations. Handbook of Numerical Analysis: Computational Methods for the Atmosphere and Oceans 119: 01202–01200. doi:10.1016/S1570-8659(08)01202-0.

    Google Scholar 

  • Shchepetkin, A.F., and J.C. McWilliams. 2009b. Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 227, pp. 3595–3624. Journal of Computational Physics 228: 8985–9000. doi:10.1016/j.jcp.2009.09.002.

    Article  Google Scholar 

  • Smith, E., and W. Kemp. 1995. Seasonal and regional variations in plankton community production and respiration for Chesapeake Bay. Marine ecology Progress Series 116: 217–231.

    Article  Google Scholar 

  • Taft, J.L., W.R. Taylor, E.O. Hartwig, and R. Loftus. 1980. Seasonal oxygen depletion in Chesapeake Bay. Estuaries and Coasts 3: 242–247. doi:10.2307/1352079.

    Article  Google Scholar 

  • Testa, J.M., Y. Li, Y.J. Lee, M. Li, D.C. Brady, D.M. Di Toro, W.M. Kemp, and J.J. Fitzpatrick. 2014. Quantifying the effects of nutrient loading on dissolved O2 cycling and hypoxia in Chesapeake Bay using a coupled hydrodynamic-biogeochemical model. Journal of Marine Systems 139: 139–158. doi:10.1016/j.jmarsys.2014.05.018.

    Article  Google Scholar 

  • Wanninkhof, R. 1992. Relationship between wind-speed and gas-exchange over the ocean. Journal of Geophysical Research-Oceans 97: 7373–7382. doi:10.1029/92JC00188.

    Article  Google Scholar 

  • Warner, J.C., W.R. Geyer, and J.A. Lerczak. 2005. Numerical modeling of an estuary: a comprehensive skill assessment. Journal of Geophysical Research-Oceans 110, C05001. doi:10.1029/2004JC002691.

    Article  Google Scholar 

  • Xu, J., S.-Y. Chao, R.R. Hood, H.V. Wang, and W.C. Boicourt. 2002. Assimilating high-resolution salinity data into a model of a partially mixed estuary. Journal of Geophysical Research-Oceans 107: 3074. doi:10.1029/2000JC000626.

    Article  Google Scholar 

  • Xu, J.T., W. Long, J.D. Wiggert, L.W. Lanerolle, C.W. Brown, R. Murtugudde, and R.R. Hood. 2012. Climate forcing and salinity variability in Chesapeake Bay, USA. Estuaries and Coasts 35: 237–261. doi:10.1007/s12237-011-9423-5.

    Article  CAS  Google Scholar 

  • Zhong, L., and M. Li. 2006. Tidal energy fluxes and dissipation in the Chesapeake Bay. Continental Shelf Research 26: 752–770. doi:10.1016/j.csr.2006.02.006.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Younjoo Lee for providing the statistical interpolation of Chesapeake Bay Program monitoring data, and Jeremy Testa for helpful discussions on data regression. We also thank Malcolm Scully for stimulating discussions on hypoxia modeling. Helpful comments from reviewers Cathy (Yang) Feng, Marjorie A.M. Friedrichs and one anonymous reviewer are appreciated. We are grateful to NOAA (CHRP-NA07N054780191) and NSF (OCE-082543 and OCE-0961880) for the financial support. This is UMCES contribution number 4978 and CHRP contribution number 198.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Li.

Additional information

Communicated by Robert D. Hetland

Submitted to Estuaries and Coasts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, M. & Kemp, W.M. A Budget Analysis of Bottom-Water Dissolved Oxygen in Chesapeake Bay. Estuaries and Coasts 38, 2132–2148 (2015). https://doi.org/10.1007/s12237-014-9928-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-014-9928-9

Keywords

Navigation