Skip to main content
Log in

Sediment-water oxygen and nutrient exchanges along the longitudinal axis of Chesapeake Bay: Seasonal patterns, controlling factors and ecological significance

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Sediment-water oxygen and nutrient (NH4 +, NO3 +NO2 , DON, PO4 3−, and DSi) fluxes were measured in three distinct regions of Chesapeake Bay at monthly intervals during 1 yr and for portions of several additional years. Examination of these data revealed strong spatial and temporal patterns. Most fluxes were greatest in the central bay (station MB), moderate in the high salinity lower bay (station SB) and reduced in the oligohaline upper bay (station NB). Sediment oxygen consumption (SOC) rates generally increased with increasing temperature until bottom water concentrations of dissolved oxygen (DO) fell below 2.5 mg l−1, apparently limiting SOC rates. Fluxes of NH4 + were elevated at temperatures >15°C and, when coupled with low bottom water DO concentrations (<5 mg l−1), very large releases (>500 μmol N m−2 h−1) were observed. Nitrate + nitrite (NO3 +NO2 ) exchanges were directed into sediments in areas where bottom water NO3 +NO2 concentrations were high (>18 μM N); sediment efflux of NO3 +NO2 occurred only in areas where bottom water NO3 +NO2 concentrations were relatively low (<11 μM N) and bottom waters well oxygenated. Phosphate fluxes were small except in areas of hypoxic and anoxic bottom waters; in those cases releases were high (50–150 μmol P m−2 h−1) but of short duration (2 mo). Dissolved silicate (DSi) fluxes were directed out of the sediments at all stations and appeared to be proportional to primary production in overlying waters. Dissolved organic nitrogen (DON) was released from the sediments at stations NB and SB and taken up by the sediments at station MB in summer months; DON fluxes were either small or noninterpretable during cooler months of the year. It appears that the amount and quality of organic matter reaching the sediments is of primary importance in determining the spatial variability and interannual differences in sediment nutrient fluxes along the axis of the bay. Surficial sediment chlorophyll-a, used as an indicator of labile sediment organic matter, was highly correlated with NH4 , PO4 3−, and DSi fluxes but only after a temporal lag of about 1 mo was added between deposition events and sediment nutrient releases. Sediment O:N flux ratios indicated that substantial sediment nitrification-denitrification probably occurred at all sites during winter-spring but not summer-fall; N:P flux ratios were high in spring but much less than expected during summer, particularly at hypoxic and anoxic sites. Finally, a comparison of seasonal N and P demand by phytoplankton with sediment nutrient releases indicated that the sediments provide a substantial fraction of nutrients required by phytoplankton in summer, but not winter, especially in the mid bay region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aller, R. C. andL. K. Bennincer. 1981. Spatial and temporal patterns of dissolved ammonium, manganese, and silica fluxes from bottom sediments of Long Island Sound, USA.Journal of Marine Research 39:295–314.

    CAS  Google Scholar 

  • Aspilla, I., H. Agemian, andA. S. Y. Chau. 1976. A semi-automated method for the determination of inorganic, organic and total phosphate in sediments.Analyst 101:187–197.

    Article  Google Scholar 

  • Balzer, W. 1984. Organic matter degradation and biogenic nutrient cycling in a near shore sediment (Kiel Bight).Limnology and Oceanography 29:1231–1246.

    CAS  Google Scholar 

  • Banta, G. T. 1992. Decomposition and nitrogen cycling in coastal marine sediments: Controls by temperature, organic matter inputs, and benthic macrofauna. Ph.D. Dissertation, Boston University, Boston, Massachusetts.

    Google Scholar 

  • Boicourt, W. C. 1982. The detection and analysis of the lateral circulation in the Potomac River Estuary. Maryland Power Plant Siting Program, Annapolis, Maryland. Publication number 66.

    Google Scholar 

  • Boicourt, W. C. 1992. Influences of circulation processes on dissolved oxygen in the Chesapeake Bay, p. 7–59.In D. E. Smith, M. Leffler, and G. Mackiernan (eds.), Oxygen Dynamics in the Chesapeake Bay: A Synthesis of Recent Research. Maryland Sea Grant College Publication UM-SG-TS-92-01, College Park, Maryland.

  • Boynton, W. R., J. H. Garber, R. Summers, andW. M. Kemp. 1995. Inputs transformations and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries.Estuaries 18:285–314.

    Article  CAS  Google Scholar 

  • Boynton, W. R. andW. M. Kemp. 1985. Nutrient regeneration and oxygen consumption by sediments along an estuarine salinity gradient.Marine Ecology Progress Series 23:45–55.

    Article  CAS  Google Scholar 

  • Boynton, W. R., W. M. Kemp, J. M. Barnes, L. L. Matteson, J. L. Watts, S. E. Stammerjohn, D. A. Jasinski, F. M. Rohland, andJ. H. Garber. 1991. Maryland Chesapeake Bay Water Quality Monitoring Program; Ecosystem Processes Component Level 1 Interpretive Report No. 8. UMCEES-CBL Ref. No. 91-110. Chesapeake Biological Laboratory, Solomons, Maryland.

    Google Scholar 

  • Boynton, W. R., W. M. Kemp, J. Garber, J. M. Barnes, J. L. W. Cowan, S. E. Stammerjohn, L. Matteson, F. Rohland, andM. Marvin. 1990. Long-term characteristics and trends of benthic oxygen and nutrient fluxes in the Maryland portion of the Chesapeake Bay, p. 339–354.In J. A. Mihursky and A. Chaney (eds.), New Perspectives in the Chesapeake System: A Research and Management Partnership. CRC Press, Baltimore, Maryland.

    Google Scholar 

  • Boynton, W. R., W. M. Kemp, andC. G. Osbourn. 1980. Nutrient fluxes across the sediment-water interface in the turbid zone of a coastal plain estuary, p. 93–109.In V. S. Kennedy (ed.), Estuarine Perspectives. Academic Press, New York.

    Google Scholar 

  • Bran, J. andH. Luebbe. 1990. Industrial Methods, Operations Manuel. Buffalo Grove, Illinois.

    Google Scholar 

  • Bronk, D. A., P. M. Glibert, andB. B. Ward. 1994. Nitrogen uptake, dissolved organic nitrogen release, and new production.Science 265:1843–1846.

    Article  CAS  Google Scholar 

  • Callender, E. 1982. Benthic phosphorous regeneration in the Potomac River Estuary.Hydrobiologia 92:431–446.

    Google Scholar 

  • Callender, E. andD. E. Hammond. 1982. Nutrient exchange across the sediment-water interface in the Potomac River estuary.Estuarine, Coastal and Shelf Science 15:392–413.

    Article  Google Scholar 

  • Chuang, W. S. andW. C. Boicourt. 1989. Resonant seiche motion in the Chesapeake Bay.Journal of Geophysical Research 94:2105–2110.

    Article  Google Scholar 

  • Cloern, J. E. 1982. Does the benthos control phytoplankton biomass in south San Francisco Bay?Marine Ecology Progress Series 9:191–202.

    Article  Google Scholar 

  • Control Equipment Corporation. 1986. Operation Manuel, Model 240-XA Elemental Analyzer. Lowell, Massachusetts.

    Google Scholar 

  • Cronin, W. B. andD. W. Pritchard. 1975. Additional statistics on the dimensions of the Chesapeake Bay and its tributaries: Cross-section widths and segment volumes per meter depth. Special Report 42. Chesapeake Bay Institute, The Johns Hopkins University, Baltimore, Maryland.

    Google Scholar 

  • Dawson, R. andG. Liebezeit. 1983. Determination of organic constituents: Determination of amino acids and carbohydrates, p. 319–340.In K. Grasshoff, M. Ehrhardt, and K. Kremling (eds.), Methods of Seawater Analysis, Verlag Chemie, Deerfield Beach, Florida.

    Google Scholar 

  • D'Elia, C. F., D. M. Nelson, andW. R. Boynton. 1983. Chesapeake Bay nutrient and plankton dynamics: The annual cycle of dissolved silicon.Geochimica et Cosmochimica Acta 47:1945–1955.

    Article  Google Scholar 

  • D'Elia, C. F., P. A. Steudler, andN. Corwin. (1977). Determination of total nitrogen in aqueous samples using persulfate digestion.Limnology and Oceanography 22:760–764.

    Google Scholar 

  • Enoksson, V. 1987. Nutrient recycling by coastal sediments. II. Effects of temporary oxygen depletion, p. 1–19.In V. Enoksson (ed.), Ph.D. Dissertation. Department of Marine Microbiology, University of Goteborg, Sweden.

    Google Scholar 

  • Fisher, T. R., P. R. Carlson, andR. T. Barber. 1982. Sediment nutrient regeneration in three North Carolina estuaries.Estuarine, Coastal and Shelf Science 14:101–116.

    Article  CAS  Google Scholar 

  • Fisher, T. R., E. R. Peele, J. W. Ammerman, andL. W. Harding, Jr. 1992. Nutrient limitation of phytoplankton in Chesapeake Bay.Marine Ecology Progress Series 82:51–63.

    Article  Google Scholar 

  • Gächter, R., J. S. Meyer, andA. Mares. 1988. Contribution of bacteria to release and fixation of phosphorous in lake sediments.Limnology and Oceanography 33:1542–1558.

    Google Scholar 

  • Graf, G., W. Bengtsson, U. Diesner, R. Schule, andH. Theede. 1982. Benthic response to sedimentation of a spring phytoplankton bloom: Process and budget.Marine Biology 67:201–208.

    Article  Google Scholar 

  • Hansen, L. S. andT. H. Blackburn. 1991. Aerobic and anaerobic mineralization of organic material in marine sediment microcosms.Marine Ecology Progress Series 75:283–291.

    Article  Google Scholar 

  • Hargrave, B. T. 1969. Similarity of oxygen uptake by benthic communities.Limnology and Oceanography 14:801–805.

    Google Scholar 

  • Hargrave, B. T. 1973. Coupling carbon flow through some pelagic and benthic communities.Journal of the Fisheries Research Board of Canada 30:1317–1326.

    Google Scholar 

  • Henriksen, K., J. I. Hansen, andT. H. Blackburn. 1980. The influence of benthic infauna on exchange rates of inorganic nitrogen between sediment and water.Ophelia (supplement) 1:249–256.

    CAS  Google Scholar 

  • Henriksen, K. andW. M. Kemp. 1988. Nitrification in estuarine and coastal marine sediment, p. 207–249.In T. H. Blackburn and J. Sorensen (eds.), Nitrogen Cycling in Coastal Marine Environments. Wiley and Sons, Ltd., New York.

    Google Scholar 

  • Henriksen, K., M. B. Rasmussen, andA. Jensen. 1983. Effect of bioturbation on microbial nitrogen transformations in the sediment and fluxes of ammonium and nitrate to the overlying water.Ecology Bulletin 35:193–205.

    CAS  Google Scholar 

  • Hopkinson, C. S. andR. L. Wetzel. 1982. In situ measurements of nutrient and oxygen fluxes in a coastal marine benthic community.Marine Ecology Progress Series 10:29–35.

    Article  CAS  Google Scholar 

  • Hunt, C. D. 1983. Variability in the benthic Mn flux in coastal marine ecosystems resulting from temperature and primary production.Limnology and Oceanography 28:913–923.

    CAS  Google Scholar 

  • Jenkins, M. C. andW. M. Kemp. 1984. The coupling of nitrification and denitrification in two estuarine sediments.Limnology and Oceanography 29:609–619.

    CAS  Google Scholar 

  • Jensen, M. H., E. Lomstein, andJ. Sørensen. 1990. Benthic NH4+ and NO3 flux following sedimentation of a spring phytoplankton bloom in Aarhus Bight, Denmark.Marine Ecology Progress Series 61:87–96.

    Article  CAS  Google Scholar 

  • Kanneworff, E. andH. Christensen. 1986. Benthic community respiration in relation to sedimentation of phytoplankton in the Oresund,Ophelia 26:269–284.

    Google Scholar 

  • Keil, R. G. andD. L. Kirchman. 1991. Dissolved combined amino acids in marine waters as determined by a vapor-phase hydrolysis method.Marine Chemistry 33:243–259.

    Article  CAS  Google Scholar 

  • Kelly, J. R., V. M. Berounsky, S. W. Nixon, andC. A. Oviatt. 1985. Benthic-pelagic coupling and nutrient cycling across an experimental eutrophication gradient.Marine Ecology Progress Series 26:207–219.

    Article  Google Scholar 

  • Kelly, J. R. andS. W. Nixon. 1984. Experimental studies of the effect of organic deposition on the metabolism of a coastal marine bottom community.Marine Ecology Progress Series 17:157–169.

    Article  CAS  Google Scholar 

  • Kemp, W. M. andW. R. Boynton. 1981. External and internal factors regulating metabolic rates of an estuarine benthic community.Oecologia 51:19–27.

    Article  Google Scholar 

  • Kemp, W. M. andW. R. Boynton. 1984. Spatial and temporal coupling of nutrient inputs to estuarine primary production: The role of particulate transport and decomposition.Bulletin of Marine Science 35:242–247.

    Google Scholar 

  • Kemp, W. M. andW. R. Boynton. 1992. Benthic-pelagic interactions: Nutrient and oxygen dynamics, p. 149–209.In D. E. Smith, M. Leffler, and G. Mackiernan (eds.), Oxygen Dynamics in the Chesapeake Bay: A Synthesis of Recent Research. Maryland Sea Grant, College Park, Maryland.

    Google Scholar 

  • Kemp, W. M., P. Sampou, J. Caffrey, M. Mayer, K. Henriksen, andW. R. Boynton. 1990. Ammonium recycling versus denitrification in Chesapeake Bay sediments.Limnology and Oceanography 35:1545–1563.

    CAS  Google Scholar 

  • Kemp, W. M., P. A. Sampou, J. Garber, J. Tuttle, andW. R. Boynton. 1992. Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: Roles of benthic and planktonic respiration and physical exchange processes.Marine Ecology Progress Series 85:137–152.

    Article  CAS  Google Scholar 

  • Klump, J. V. andC. S. Martens. 1981. Biogeochemical cycling in an organic rich coastal marine basin. II. Nutrient sediment-water exchange processes.Geochimica et Cosmochimica Acta 45:101–121.

    Article  CAS  Google Scholar 

  • Koop, K., W. R. Boynton, F. Wulff andR. Carman. 1990. Sediment-water oxygen and nutrient exchanges along a depth gradient in the Baltic Sea.Marine Ecology Progress Series 63:65–77.

    Article  CAS  Google Scholar 

  • Krom, M. D. andR. A. Berner. 1980. Adsorption of phosphorous in anoxic marine sediments.Limnology and Oceanography 25:797–806.

    CAS  Google Scholar 

  • Magnien, R. E., D. K. Austin, andB. D. Michael. 1990. Chemical/Physical Properties component. Level I Data Report. December, 1990. Maryland Department of the Environment. Chesapeake Bay Water Quality Monitoring Program. Baltimore, Maryland.

    Google Scholar 

  • Malone, T. C., W. M. Kemp, H. W.Ducklow, W. R. Boynton, J. H. Tuttle, andR. B. Jonas. 1986. Lateral variation in the production and fate of phytoplankton in a partially stratified estuary.Marine Ecology Progress Series 32:149–160.

    Article  Google Scholar 

  • Nedwell, D. B., S. E. Hall, A. Andersson, Å. F. Hagström, andE. B. Lindström. 1983. Seasonal changes in the distribution and exchange of inorganic nitrogen between sediment and water in the Northern Baltic (Gulf of Bothnia).Estuarine, Coastal and Shelf Science 17:169–179.

    Article  CAS  Google Scholar 

  • Nixon, S. W. 1981. Remineralization and nutrient cycling in coastal marine ecosystems, p. 111–138.In B. J. Neilson and L. E. Cronin (eds.), Estuaries and Nutrients. Humana Press, New Jersey.

    Google Scholar 

  • Nixon, S. W., C. A. Oviatt, J. Frithsen, andB. Sullivan. 1986. Nutrients and the productivity of estuarine and coastal marine systems.Journal of the Limnological Society of South Africa 12:43–71.

    CAS  Google Scholar 

  • Nixon, S. W., C. A. Oviatt, andS. S. Hale. 1976. Nitrogen regeneration and the metabolism of coastal marine bottom communities, p. 269–283.In J. M. Anderson and A. MacFadyen (eds.), The Role of Terrestial and Aquatic Organisms in Decomposition Processes. Blackwell, London, England.

    Google Scholar 

  • Paasche, E. 1980. Silicon, p. 259–284.In I. Morris (ed.), The Physiological Ecology of Phytoplankton. Studies in Ecology. University of California Press, Berkely, California.

    Google Scholar 

  • Palenik, B., D. J. Kieber, andF. M. M. Morel. 1989. Dissolved organic nitrogen use by phytoplankton: The role of cell-surface enzymes.Biological Oceanography 6:347–354.

    Google Scholar 

  • Parsons, T. R., Y. Maita, andC. M. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Elmsford, New York.

    Google Scholar 

  • Pritchard, D. W. 1967. Observations of circulation of coastal plain estuaries, p. 37–44.In G. H. Lauff (ed.), Estuaries. American Association for the Advancement of Science. Publ. 83, Washington, D.C.

  • Redfield, A. C. 1934. On the proportions of organic derivatives in seawater and their relation to the composition of the plankton, p. 176–192.In James Johnstone Memorial Volume. University Press, Liverpool, England.

    Google Scholar 

  • Roden, E. E. andJ. H. Tuttle. 1992. Sulfide release from estuarine sediments underlying anoxic bottom water.Limnology and Oceanography 37:725–737.

    CAS  Google Scholar 

  • Roden, E. E. andJ. H. Tuttle. 1993. Inorganic sulfur cycling in mid and lower Chesapeake Bay sediments.Marine Ecology Progress Series 93:101–118.

    Article  CAS  Google Scholar 

  • Sampou, P. andC. A. Oviatt. 1991. Seasonal patterns of sedimentary carbon and anaerobic respiration along a simulated eutrophication gradient.Marine Ecology Progress Series 72:271–282.

    Article  Google Scholar 

  • Sanford, L. P. andW. C. Boicourt. 1990. Wind forced salt intrusion into a tributary estuary.Journal of Geophysical Research 95:13,357–13,371.

    Article  Google Scholar 

  • Sanford, L. P., K. G. Sellner, andD. L. Breitburg. 1990. Covariability of dissolved oxygen with physical processes in the summertime Chesapeake Bay.Journal of Marine Research 48:567–590.

    CAS  Google Scholar 

  • Seitzinger, S. 1988. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance.Limnology and Oceanography 33:702–724.

    Article  CAS  Google Scholar 

  • Summers, R. M. 1989. Point and Non-point Source Nitrogen and Phosphorus Loading to the Northern Chesapeake Bay. Maryland Department of the Environment, Water Management Administration, Chesapeake Bay Special Projects Program. Baltimore, Maryland.

    Google Scholar 

  • Sundby, B., C. Gobeil, N. Silverberg, andA. Mucci. 1992. The phosphorus cycle in coastal marine sediments.Limnology and Oceanography 37:1129–1145.

    CAS  Google Scholar 

  • Teague, K. G., C. J. Madden, andJ. W. Day, Jr. 1988. Sediment-water oxygen and nutrient fluxes in a river-dominated estuary.Estuaries 11:1–9.

    Article  CAS  Google Scholar 

  • Tuttle, J., R. Jonas, andT. Malone. 1987. Origin, development and significance of Chesapeake Bay anoxia, p. 442–472.In S. K. Majumdar, L. W. Hall, Jr., and M. A. Herbert (eds.), Contaminant Problems and Management of Living Resources. Pennsylvania Academy of Sciences, Phillipsburg, Pennsylvania.

    Google Scholar 

  • Twilley, R. R. andW. M. Kemp. 1987. Estimates of sediment denitrification and its influence on the fate of nitrogen in Chesapeake Bay. United States Environmental Protection Agency, Chesapeake Bay Program, Annapolis, Maryland.

    Google Scholar 

  • United States Environmental Protection Agency. 1979. Methods for chemical analysis of water and wastes. Environmental Monitoring and Support Laboratory. Cincinnati, Ohio. USEPA-600/4-79-020.

  • United States Environmental Protection Agency. 1982. Chesapeake Bay Program, Technical Studies: A synthesis. Washington, D.C.

  • United States Geological Survey. 1990. Water Resources Data, Maryland and Delaware. MD-DE-90-1. Towson, Maryland.

  • Whitfield, M. 1969. Eh as an operational parameter in estuarine studies.Limnology 14:547–558.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean L. W. Cowan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowan, J.L.W., Boynton, W.R. Sediment-water oxygen and nutrient exchanges along the longitudinal axis of Chesapeake Bay: Seasonal patterns, controlling factors and ecological significance. Estuaries 19, 562–580 (1996). https://doi.org/10.2307/1352518

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352518

Keywords

Navigation