Skip to main content

Advertisement

Log in

Suppressing Potato Cyst Nematode, Globodera rostochiensis, with Extracts of Brassicacea Plants

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

The golden potato cyst nematode, Globodera rostochiensis (Woll) is responsible for large yield losses in potato crops in northern Portugal. Fumigation with synthetic chemicals controls this soil pest with possible negative impact on the environment. Thus, it is desirable to find environmentally friendly alternative measures to control this nematode species. Amending plant parts of Brassicaceae have been recognized as potential biofumigation practices. Active volatiles compounds released after enzymatic hydrolysis are responsible for the efficacy of biofumigants. The glucosinolate-myrosinase-isothiocyanates system appears to be controlling several soilborne pests and pathogens. The biological role of Brassicacea green manure amendments on potato cyst nematodes populations has not been reported in Portugal. In this study we evaluated the effects of two concentrations (0.2 and 0.05 µmoles 100 g−1 dry weight) of total glucosinolates of six plants extracts (broccoli, cauliflower, collards of Brassica rapa, collards of kale, Portuguese cabbage and watercress) on potato cyst nematodes population. The results were expressed as number of new cysts formed on bioassay Desiree potato roots. ANOVA analysis showed a highly significant effect (P < 0.001) of the plant extracts and concentrations tested on the suppression of potato cysts nematodes. The LSD test showed that the number of newly formed cyst on root system of bioassay plant was also related (P<0.05) to type and concentrations of glucosinolates extracts. The lowest numbers of cysts were recovered from potato roots that received extracts of watercress, cauliflower and B. Rapa, respectively. The cyst reduction appeared to be associated with high levels of 2-Phenthyl and 2-propenyl glucosinolates in these plants.

Resumen

El nematodo dorado del quiste de la papa, Globodera rostochiensis (Woll) es responsable de graves pérdidas de rendimiento en cultivos de papa en el norte de Portugal. La fumigación con químicos sintéticos controla esta plaga del suelo con posible impacto negativo en el medio ambiente. Por lo tanto es deseable encontrar alternativas que sean amigables con el medio ambiente para controlar este nematodo. Enmiendas del suelo a partir de partes de plantas de crucíferas han sido reconocidas como practicas potenciales de bio fumigación. Compuestos volátiles activos liberados después de la hidrólisis enzimática son los responsables de la eficacia de biofumigantes. El sistema glucosinolato-mirosinasa-isotiocianato parece ser el control de varias plagas plagas y patógenos del suelo. El rol biológico de las enmiendas del suelo de abono verde de Brassicacea en las poblaciones de nematodos del quiste de la papa no ha sido reportado en Portugal. En este estudio evaluamos los efectos de 2 concentraciones (0.2 y 0.05 umoles 100g−1 peso seco) de glucosinolatos totales de seis extractos de plantas (brócoli, coliflor, hojas de nabo, hojas de kale, col Portuguesa y berro) en la población del quiste del nematodo de la papa. Los resultados se expresaron como número de quistes nuevos formados en los ensayos biológicos en raíces de papa Desiree. El análisis ANOVA mostró un efecto altamente significativo (P<0.001) de los extractos de plantas y concentraciones probadas en la eliminación del nematodo del quiste de la papa. La prueba LSD mostró que el numero de quistes recién formados en los ensayos biológicos en raíz, también estaba relacionado (P<0.05) con el tipo y concentración de extractos de glucosinolatos. El número más bajo de quistes fue obtenido de las raíces de papa que recibieron extracto de berro, coliflor y nabo respectivamente. La reducción de quistes parece estar asociada con altos niveles de glucosinolatos 2-Phentyl y 2-propenil, en estas plantas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abreu, C. 1987. Nemátodos-de-quisto da Batateira. Cálculo de Prejuízos, 54. Vila Real, Portugal: UTAD.

    Google Scholar 

  • Bones, A.M., and J.T. Rossiter. 1996. The myrosinase-glucosinolate system, its organisation and biochemistry. Physiologia Plantarum 97: 194–208.

    Article  CAS  Google Scholar 

  • Buskov, S., B. Serra, E. Rosa, H. Sorensen, and J.C. Sorensen. 2002. Effects of intact glucosinolates and products produced from glucosinolates in myrosinase-catalyzed hydrolysis on the potato cyst nematode (Globodera rostochiensis Woll.). Journal of Agricultural and Food Chemistry 50: 690–695.

    Article  PubMed  CAS  Google Scholar 

  • Chitwood, D.J. 2002. Phytochemical based strategies for nematode control. Annual Review of Phytopathology 40: 221–249.

    Article  PubMed  CAS  Google Scholar 

  • Ciska, E., and H. Kozlowska. 1998. Glucosinolates of cruciferous vegetables. Polish Journal of Food and Nutrition Sciences 7/48(1): 5–22.

    Google Scholar 

  • Ciska, E., B. Martyniak-Przybysewska, and H. Kozlowska. 2000. Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. Journal of Agricultural and Food Chemistry 48: 2862–2867.

    Article  PubMed  CAS  Google Scholar 

  • Crow, W.T., E.A. Guertal, and R. Rodrigues-Kabana. 1996. Responses of Meloidogyne arenaria and Meloidogyne incognita to green manures and supplemental urea in glasshouse culture. Journal of Nematology 28: 648–654.

    PubMed  CAS  Google Scholar 

  • Cunha, M.J.M., I.L.P.M. Conceição, I.M.O. Abrantes, and M.S.N.A. Santos. 2004. Characterization of potato cyst nematode populations from Portugal. Nematology 6: 55–58.

    Article  Google Scholar 

  • Fahey, J.W., A.T. Zalcmann, and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56: 5–51.

    Article  PubMed  CAS  Google Scholar 

  • Heaney, R.K., and G.R. Fenwick. 1980. Glucosinolates in Brassica vegetables. Analysis of 22 varieties of Brussels sprouts (Brassica oleracea var. gemmifera). Journal of the Science of Food and Agriculture 18: 492–495.

    Google Scholar 

  • Ibekwe, A.M., S.K. Papiernik, J. Gan, S.R. Yates, C.H. Yang, and D.E. Crowley. 2001. Impact of soil fumigants on soil microbial communities. Applied Environmental Microbiology 67: 3245–3257.

    Article  CAS  Google Scholar 

  • Kirkegaard, J.A., and J.N. Matthiessen. 1997. High phenylethyl glucosinolate levels suppress nematode infestation in roots. Cereals Biofumigation Update 6: 1–2.

    Google Scholar 

  • Kirkegaard, J.A., and J.N. Matthiessen. 2004. Developing and refining the biofumigation concept. Agroindustria 3: 233–239.

    Google Scholar 

  • Kirkegaard, J.A., and J.N. Matthiessen. 2006. Biofumigation and Enhanced Biodegradation: Opportunity and Challenge in Soilborne Pest and Disease Management. Critical Reviews in Plant Sciences 25: 235–265.

    Article  Google Scholar 

  • Kirkegaard, J.A., and M. Sarwar. 1998. Biofumigation potencial of brassicas. I Variation in glucosinolate profiles of diverse field-grown brassicas. Plant Soil 201: 71–89.

    Article  CAS  Google Scholar 

  • Kirkegaard, J.A., and M. Sarwar. 1999. Glucosinolate profiles of Australian canola (Brassica napus annua L.) and Indian mustard (Brassica juncea L.) cultivars: Implications for biofumigation. Australian Journal of Agricultural Research 50: 315–324.

    Article  CAS  Google Scholar 

  • Kushad, M.M., A.F. Brown, A.C. Kurilich, J.A. Juvik, B.P. Klein, M.A. Wallig, and E.H. Jeffery. 1999. Variation of glucosinolates in vegetable crops of Brassica oleracea. Journal of Agricultural and Food Chemistry 47: 1541–1548.

    Article  PubMed  CAS  Google Scholar 

  • Lazzeri, L., R. Tacconi, and S. Palmieri. 1993. In vitro activity of some glucosinolates and their action products toward a population of the nematode Heterodera schachtii. Journal of Agricultural and Food Chemistry 41: 825–829.

    Article  CAS  Google Scholar 

  • Lazzeri, L., G. Curto, O. Leoni, and E. Dallavalle. 2004. Effects of glucosinolates and their enzymatic hydrolisis products via myrosinase on the root-knot nematode Meloidogyne incognita (Kofoid et white) Chitw. Journal of Agricultural and Food Chemistry 52: 6073–6707.

    Article  Google Scholar 

  • McLeod, R., and E. Da Silva. 1994. Covercrops and interrow nematode infestation in vineyards. Effects of green material and of roots of cereals, legume and crucifer crops on root-knot (Meloidogyne incognita and Meloidogyne javanica) and citrus (Tylenchulus semipenetrans) nematodes. The Australian Grapegrower and Winemaker 366a: 119–124.

    Google Scholar 

  • Mojtahedi, H., G.S. Santo, A.N. Hang, and J.H. Wilson. 1991. Suppression of root-knot nematode populations with selected rapeseed cultivars as green manure. Journal of Nematology 23: 170–174.

    PubMed  CAS  Google Scholar 

  • Mojtahedi, H., G.S. Santo, J.H. Wilson, and A.N. Hang. 1993. Managing Meloidogyne chitwoodi on potato with rapeseed as green manure. Plant Disease 77: 42–46.

    Google Scholar 

  • Pinto, S., E. Rosa, and S. Santos. 1998. Effect of 2-propenyl glucosinolate and derived isothiocyanate on the activity of the nematode Globodera rostochiensis (Woll.). Acta Horticulturae 459: 323–327.

    CAS  Google Scholar 

  • Potter, M.J., K. Davies, and A.J. Rathjen. 1998. Suppressive impact of glucosinolates in Brassica vegetative tissues on root lesion nematode Pratylenchus neglectus. Journal of Chemical Ecology 24: 67–80.

    Article  CAS  Google Scholar 

  • Rosa, E., R.K. Heaney, G.R. Fenwick, and C.A.M. Portas. 1997. Glucosinolates in crop plants. Horticultural Reviews 19: 99–215.

    CAS  Google Scholar 

  • Santos, M.S.N.A., K. Evans, A.C. Abreu, F.F. Martins, and I.M.O. Abrantes. 1995. A review of potato cyst nematodes in Portugal. Nematologia Mediterranea 23: 35–42.

    Google Scholar 

  • Serra, B., E. Rosa, R. Iori, J. Barillari, A. Cardoso, C. Abreu, and P. Rollin. 2002. In vitro activity of 2-phenylethyl glucoisnolate, and its hydrolisis derivates on the root-knot nematode Globodera rostochiensis Woll. Scientia Horticulturae 92: 75–81.

    Article  CAS  Google Scholar 

  • Spinks, E.A., K. Sones, and G.R. Fenwick. 1984. The quantitative analysis of glucosinolates in cruciferous vegetables, oilseeds and forages using high-performance liquid chromatography. Fette Seifen Anstrichmittel Verbunden mit der Zeitschrift die Ernahrungsindustrie 86: 228–231.

    Article  CAS  Google Scholar 

  • Toyota, K., K. Ritz, S. Kuninaga, and M. Kimura. 1999. Impact of fumigation with metam sodium upon soil microbial community structure in two Japanese soils. Soil Science and Plant Nutrition 45: 203–207.

    Google Scholar 

  • Turner, S.J., and K. Evans. 1998. The origins, global distribution and biology of potato cyst nematodes (Globodera rostochiensis Woll.) and Globodera pallida Stone). In Potato cyst nematodes–biology distribution and control, ed. R.J. Marks, and B.B. Brodie, 7–26. Wallingford UK: CAB International.

    Google Scholar 

  • Zasada, I.A., and H. Ferris. 2004. Nematode suppression with brassicaceous amendments: application based upon glucosinolate profiles. Soil Biology and Biochemistry 36: 1017–1024.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Aires.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aires, A., Carvalho, R., Da Conceição Barbosa, M. et al. Suppressing Potato Cyst Nematode, Globodera rostochiensis, with Extracts of Brassicacea Plants. Am. J. Pot Res 86, 327–333 (2009). https://doi.org/10.1007/s12230-009-9086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-009-9086-y

Keywords

Navigation