Skip to main content
Log in

Underdiagnosis of Metabolic Syndrome in Non-Hispanic Black Adolescents: A Call for Ethnic-Specific Criteria

  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Childhood obesity is a risk factor for the development of both type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). One marker that can be used to predict T2DM is the metabolic syndrome (MetS). MetS, a cluster of cardiovascular factors associated with insulin resistance, is defined by central obesity, impaired fasting glucose, hypertension, elevated triglycerides (TG), and low levels of high-density lipoprotein cholesterol. Some have advocated using a diagnosis of MetS to trigger increased intervention in children. However, ethnic differences in MetS may hamper identification of at-risk children. For example, non-Hispanic blacks are diagnosed with MetS less frequently than non-Hispanic whites, despite having higher rates of T2DM and CVD. These differences in MetS are predominantly due to a low frequency of hypertriglyceridemia in non-Hispanic blacks. Compared with non-Hispanic whites and Mexican Americans, non-Hispanic blacks have lower TG levels at baseline but exhibit worsening insulin resistance with increasing TG. Therefore “normal” TG levels appear to be falsely reassuring among insulin-resistant non-Hispanic blacks. Ethnic-specific tools may be needed to more accurately predict risk for T2DM and CVD in minorities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Narayan KM, Boyle JP, Thompson TJ, et al.: Lifetime risk for diabetes mellitus in the United States. JAMA 2003, 290:1884–1890.

    Article  CAS  PubMed  Google Scholar 

  2. Savoye M, Shaw M, Dziura J, et al.: Effects of a weight management program on body composition and metabolic parameters in overweight children: a randomized controlled trial. JAMA 2007, 297:2697–2704.

    Article  CAS  PubMed  Google Scholar 

  3. • Wilfley DE, Stein RI, Saelens BE, et al.: Efficacy of maintenance treatment approaches for childhood overweight: a randomized controlled trial. JAMA 2007, 298:1661–1673 This randomized trial demonstrated that by using time-intensive efforts, children and their families were able to lose weight and maintain weight loss (change in body mass index z-score of 0.24) over a 30-month period. Such programs are likely to be more expensive that clinical programs that are currently available.

    Article  CAS  PubMed  Google Scholar 

  4. Reaven GM: Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988, 37:1595–1607.

    Article  CAS  PubMed  Google Scholar 

  5. DeBoer MD, Gurka MJ: Ability among adolescents for the metabolic syndrome to predict elevations in factors associated with type 2 diabetes and cardiovascular disease: Data from the National Health and Nutrition Examination Survey (NHANES) 1999–2006. Metab Syndrome Related Disord 2010 (in press).

  6. •• Morrison JA, Friedman LA, Wang P, Glueck CJ: Metabolic syndrome in childhood predicts adult metabolic syndrome and type 2 diabetes mellitus 25–30 years later. J Pediatr 2008, 152:201–206 This is a prospective study that demonstrated that MetS in childhood predicts future T2DM. Children had metabolic measurements at 6–18 years of age and were evaluated 25–30 years later for the development of diabetes. Children with MetS were 12 times as likely to develop T2DM.

    Article  CAS  PubMed  Google Scholar 

  7. Coppen AM, Risser JA, Vash PD: Metabolic syndrome resolution in children and adolescents after 10 weeks of weight loss. J Cardiometab Syndr 2008, 3:205–210.

    Article  PubMed  Google Scholar 

  8. Park YW, Zhu S, Palaniappan L, et al.: The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988–1994. Arch Intern Med 2003, 163:427–436.

    Article  PubMed  Google Scholar 

  9. •• Sumner AE: Ethnic differences in triglyceride levels and high-density lipoprotein lead to underdiagnosis of the metabolic syndrome in black children and adults. J Pediatr 2009, 155:S7.e7–S7.e11 This review details ethnic differences in individual components of MetS.

    Article  CAS  Google Scholar 

  10. •• de Ferranti S, Mozaffarian D: The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem 2008, 54:945–955 This review describes molecular features of processes underlying insulin resistance in MetS.

    Article  PubMed  Google Scholar 

  11. Yamauchi T, Kamon J, Waki H, et al.: The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001, 7:941–946.

    Article  CAS  PubMed  Google Scholar 

  12. Berg AH, Combs TP, Scherer PE: ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab 2002, 13:84–89.

    Article  CAS  PubMed  Google Scholar 

  13. Maeda N, Shimomura I, Kishida K, et al.: Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 2002, 8:731–737.

    Article  CAS  PubMed  Google Scholar 

  14. Ouchi N, Kihara S, Arita Y, et al.: Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 2000, 102:1296–1301.

    CAS  PubMed  Google Scholar 

  15. Weyer C, Funahashi T, Tanaka S, et al.: Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001, 86:1930–1935.

    Article  CAS  PubMed  Google Scholar 

  16. Stefan N, Bunt JC, Salbe AD, et al.: Plasma adiponectin concentrations in children: relationships with obesity and insulinemia. J Clin Endocrinol Metab 2002, 87:4652–4656.

    Article  CAS  PubMed  Google Scholar 

  17. Huang KC, Lue BH, Yen RF, et al.: Plasma adiponectin levels and metabolic factors in nondiabetic adolescents. Obes Res 2004, 12:119–124.

    Article  PubMed  Google Scholar 

  18. Martin LJ, Woo JG, Daniels SR, et al.: The relationships of adiponectin with insulin and lipids are strengthened with increasing adiposity. J Clin Endocrinol Metab 2005, 90:4255–4259.

    Article  CAS  PubMed  Google Scholar 

  19. Aguirre V, Uchida T, Yenush L, et al.: The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 2000, 275:9047–9054.

    Article  CAS  PubMed  Google Scholar 

  20. Harman-Boehm I, Blüher M, et al.: Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab 2007, 92:2240–2247.

    Article  CAS  PubMed  Google Scholar 

  21. • Tilg H, Moschen AR: Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 2008, 14:222–231 This review highlights molecular processes linking inflammation, adipokines, and reduced insulin signaling.

    Article  CAS  PubMed  Google Scholar 

  22. Dandona P, Aljada A, Bandyopadhyay A: Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 2004, 25:4–7.

    Article  CAS  PubMed  Google Scholar 

  23. Danesh J, Wheeler JG, Hirschfield GM, et al.: C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 2004, 350:1387–1397.

    Article  CAS  PubMed  Google Scholar 

  24. Pradhan AD, Manson JE, Rifai N, et al.: C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001, 286:327–334.

    Article  CAS  PubMed  Google Scholar 

  25. Petersen KF, Befroy D, Dufour S, et al.: Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 2003, 300:1140–1142.

    Article  CAS  PubMed  Google Scholar 

  26. Gregor MF, Hotamisligil GS: Thematic review series: Adipocyte Biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res 2007, 48:1905–1914.

    Article  CAS  PubMed  Google Scholar 

  27. Hosogai N, Fukuhara A, Oshima K, et al.: Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 2007, 56:901–911.

    Article  CAS  PubMed  Google Scholar 

  28. Furukawa S, Fujita T, Shimabukuro M, et al.: Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004, 114:1752–1761.

    CAS  PubMed  Google Scholar 

  29. Qatanani M, Lazar MA: Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev 2007, 21:1443–1455.

    Article  CAS  PubMed  Google Scholar 

  30. Carvalho-Filho MA, Ueno M, Hirabara SM, et al.: S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: a novel mechanism of insulin resistance. Diabetes 2005, 54:959–967.

    Article  CAS  PubMed  Google Scholar 

  31. Kaneki M, Shimizu N, Yamada D, Chang K: Nitrosative stress and pathogenesis of insulin resistance. Antioxid Redox Signal 2007, 9:319–329.

    Article  CAS  PubMed  Google Scholar 

  32. Pauli JR, Ropelle ER, Cintra DE, et al.: Acute physical exercise reverses S-nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinase B/Akt in diet-induced obese Wistar rats. J Physiol 2008, 586:659–671.

    Article  CAS  PubMed  Google Scholar 

  33. •• Defronzo RA: Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009, 58:773–795 This fantastic treatise extensively details processes related to insulin resistance and β-cell failure leading to T2DM.

    Article  CAS  PubMed  Google Scholar 

  34. Després JP, Lemieux I: Abdominal obesity and metabolic syndrome. Nature 2006, 444:881–887.

    Article  PubMed  Google Scholar 

  35. Mittelman SD, Van Citters GW, Kirkman EL, Bergman RN: Extreme insulin resistance of the central adipose depot in vivo. Diabetes 2002, 51:755–761.

    Article  CAS  PubMed  Google Scholar 

  36. Maheux P, Azhar S, Kern PA, et al.: Relationship between insulin-mediated glucose disposal and regulation of plasma and adipose tissue lipoprotein lipase. Diabetologia 1997, 40:850–858.

    Article  CAS  PubMed  Google Scholar 

  37. Schneider JG, von Eynatten M, Schiekofer S, et al.: Low plasma adiponectin levels are associated with increased hepatic lipase activity in vivo. Diabetes Care 2005, 28:2181–2186.

    Article  CAS  PubMed  Google Scholar 

  38. Li C, Ford ES: Is there a single underlying factor for the metabolic syndrome in adolescents? A confirmatory factor analysis. Diabetes Care 2007, 30:1556–1561.

    Article  PubMed  Google Scholar 

  39. Pausova Z: From big fat cells to high blood pressure: a pathway to obesity-associated hypertension. Curr Opin Nephrol Hypertens 2006, 15:173–178.

    Article  PubMed  Google Scholar 

  40. Paulmyer-Lacroix O, Boullu S, Oliver C, et al.: Expression of the mRNA coding for 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue from obese patients: an in situ hybridization study. J Clin Endocrinol Metab 2002, 87:2701–2705.

    Article  CAS  PubMed  Google Scholar 

  41. • Mathieu P, Poirier P, Pibarot P, et al.: Visceral obesity: the link among inflammation, hypertension, and cardiovascular disease. Hypertension 2009;53:577–584 This review demonstrates many adverse roles that visceral adipocytes play in worsening MetS.

    Article  CAS  PubMed  Google Scholar 

  42. Paolisso G, Tagliamonte MR, Rizzo MR, et al.: Lowering fatty acids potentiates acute insulin response in first degree relatives of people with type II diabetes. Diabetologia 1998, 41:1127–1132.

    Article  CAS  PubMed  Google Scholar 

  43. Clore JN, Stillman J, Sugerman H: Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes. Diabetes 2000, 49:969–974.

    Article  CAS  PubMed  Google Scholar 

  44. Gastaldelli A, Baldi S, Pettiti M, et al.: Influence of obesity and type 2 diabetes on gluconeogenesis and glucose output in humans: a quantitative study. Diabetes 2000, 49:1367–1373.

    Article  CAS  PubMed  Google Scholar 

  45. Ford ES, Li C, Cook S, Choi HK: Serum concentrations of uric acid and the metabolic syndrome among US children and adolescents. Circulation 2007, 115:2526–2532.

    Article  CAS  PubMed  Google Scholar 

  46. Hanley AJ, Williams K, Gonzalez C, et al.; San Antonio Heart Study; Mexico City Diabetes Study; Insulin Resistance Atherosclerosis Study: Prediction of type 2 diabetes using simple measures of insulin resistance: combined results from the San Antonio Heart Study, the Mexico City Diabetes Study, and the Insulin Resistance Atherosclerosis Study. Diabetes 2003, 52:463–469. (Published erratum appears in Diabetes 2003, 52:1306.)

    Article  CAS  PubMed  Google Scholar 

  47. Wannamethee SG, Shaper AG, Lennon L, Morris RW: Metabolic syndrome vs Framingham Risk Score for prediction of coronary heart disease, stroke, and type 2 diabetes mellitus. Arch Intern Med 2005, 165:2644–2650.

    Article  PubMed  Google Scholar 

  48. Cook S, Weitzman M, Auinger P, et al.: Prevalence of a metabolic syndrome phenotype in adolescents: findings from the third National Health and Nutrition Examination Survey, 1988–1994. Arch Pediatr Adolesc Med 2003, 157:821–827.

    Article  PubMed  Google Scholar 

  49. Ford ES, Li C, Zhao G, et al.: Prevalence of the metabolic syndrome among U.S. adolescents using the definition from the International Diabetes Federation. Diabetes Care 2008, 31:587–589.

    Article  PubMed  Google Scholar 

  50. • Johnson WD, Kroon JJ, Greenway FL, et al.: Prevalence of risk factors for metabolic syndrome in adolescents: National Health and Nutrition Examination Survey (NHANES), 2001–2006. Arch Pediatr Adolesc Med 2009, 163:371–377 This report from NHANES provides the most current evaluation of individual components of MetS among adolescents.

    Article  PubMed  Google Scholar 

  51. Arslanian S, Suprasongsin C, Janosky JE: Insulin secretion and sensitivity in black versus white prepubertal healthy children. J Clin Endocrinol Metab 1997, 82:1923–1927.

    Article  CAS  PubMed  Google Scholar 

  52. Gower BA, Granger WM, Franklin F, et al.: Contribution of insulin secretion and clearance to glucose-induced insulin concentration in African–American and Caucasian children. J Clin Endocrinol Metab 2002, 87:2218–2224.

    Article  CAS  PubMed  Google Scholar 

  53. Klein DJ, Aronson Friedman L, Harlan WR, et al.: Obesity and the development of insulin resistance and impaired fasting glucose in black and white adolescent girls: a longitudinal study. Diabetes Care 2004, 27:378–383.

    Article  PubMed  Google Scholar 

  54. Haffner SM, D’Agostino R, Saad MF, et al.: Increased insulin resistance and insulin secretion in nondiabetic African–Americans and Hispanics compared with non-Hispanic whites. The Insulin Resistance Atherosclerosis Study. Diabetes 1996, 45:742–748.

    CAS  Google Scholar 

  55. Osei K, Rhinesmith S, Gaillard T, Schuster D: Impaired insulin sensitivity, insulin secretion, and glucose effectiveness predict future development of impaired glucose tolerance and type 2 diabetes in pre-diabetic African Americans: implications for primary diabetes prevention. Diabetes Care 2004, 27:1439–1446.

    Article  CAS  PubMed  Google Scholar 

  56. • Sumner AE, Cowie CC: Ethnic differences in the ability of triglyceride levels to identify insulin resistance. Atherosclerosis 2008, 196:696–703 This evaluation of NHANES data among adults demonstrates that increasing TG levels are associated with increased insulin resistance among non-Hispanic blacks, although non-Hispanic blacks are likely to have TG levels in the “normal” range, even with significant insulin resistance.

    Article  CAS  PubMed  Google Scholar 

  57. Degawa-Yamauchi M, Dilts JR, Bovenkerk JE, et al.: Lower serum adiponectin levels in African–American boys. Obes Res 2003, 11:1384–1390.

    Article  CAS  PubMed  Google Scholar 

  58. Lee S, Bacha F, Gungor N, Arslanian SA: Racial differences in adiponectin in youth: relationship to visceral fat and insulin sensitivity. Diabetes Care 2006, 29:51–56.

    Article  CAS  PubMed  Google Scholar 

  59. Ford ES, Giles WH, Mokdad AH, Myers GL: Distribution and correlates of C-reactive protein concentrations among adult US women. Clin Chem 2004, 50:574–581.

    Article  CAS  PubMed  Google Scholar 

  60. Ford ES, Giles WH, Myers GL, et al.: C-reactive protein concentration distribution among US children and young adults: findings from the National Health and Nutrition Examination Survey, 1999–2000. Clin Chem 2003, 49:1353–1357.

    Article  CAS  PubMed  Google Scholar 

  61. Albert MA, Glynn RJ, Buring J, Ridker PM: C-reactive protein levels among women of various ethnic groups living in the United States (from the Women’s Health Study). Am J Cardiol 2004, 93:1238–1242.

    Article  CAS  PubMed  Google Scholar 

  62. Khera A, McGuire DK, Murphy SA, et al.: Race and gender differences in C-reactive protein levels. J Am Coll Cardiol 2005, 46:464–469.

    Article  CAS  PubMed  Google Scholar 

  63. SEARCH for Diabetes in Youth Study Group; Liese AD, D’Agostino RB Jr, Hamman RF, et al.: The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics 2006, 118:1510–1518.

    Article  PubMed  Google Scholar 

  64. Cowie CC, Rust KF, Byrd-Holt DD, et al.: Prevalence of diabetes and impaired fasting glucose in adults in the U.S. population: National Health And Nutrition Examination Survey 1999–2002. Diabetes Care 2006, 29:1263–1268.

    Article  PubMed  Google Scholar 

  65. Yancy CW, Benjamin EJ, Fabunmi RP, Bonow RO: Discovering the full spectrum of cardiovascular disease: Minority Health Summit 2003: executive summary. Circulation 2005, 111:1339–1349.

    Article  PubMed  Google Scholar 

  66. Ogden CL, Carroll MD, Flegal KM: High body mass index for age among US children and adolescents, 2003–2006. JAMA 2008, 299:2401–2405.

    Article  CAS  PubMed  Google Scholar 

  67. Lieb DC, Snow RE, DeBoer MD: Socioeconomic factors in the development of childhood obesity and diabetes. Clin Sports Med 2009, 28:349–378.

    Article  PubMed  Google Scholar 

  68. Kimm SY, Barton BA, Obarzanek E, et al.: Racial divergence in adiposity during adolescence: The NHLBI Growth and Health Study. Pediatrics 2001, 107:E34.

    Article  CAS  PubMed  Google Scholar 

  69. Thompson DR, Obarzanek E, Franko DL, et al.: Childhood overweight and cardiovascular disease risk factors: the National Heart, Lung, and Blood Institute Growth and Health Study. J Pediatr 2007, 150:18–25.

    Article  PubMed  Google Scholar 

  70. Hedley AA, Ogden CL, Johnson CL, et al.: Prevalence of overweight and obesity among US children, adolescents, and adults, 1999–2002. JAMA 2004, 291:2847–2850.

    Article  CAS  PubMed  Google Scholar 

  71. Ogden CL, Carroll MD, Curtin LR, et al.: Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 2006, 295:1549–1555.

    Article  CAS  PubMed  Google Scholar 

  72. Ford ES, Giles WH, Dietz WH: Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 2002, 287:356–359.

    Article  PubMed  Google Scholar 

  73. Katzmarzyk PT, Srinivasan SR, Chen W, et al.: Body mass index, waist circumference, and clustering of cardiovascular disease risk factors in a biracial sample of children and adolescents. Pediatrics 2004, 114:e198–e205.

    Article  PubMed  Google Scholar 

  74. Winkleby MA, Robinson TN, Sundquist J, Kraemer HC: Ethnic variation in cardiovascular disease risk factors among children and young adults: findings from the Third National Health and Nutrition Examination Survey, 1988–1994. JAMA 1999, 281:1006–1013.

    Article  CAS  PubMed  Google Scholar 

  75. CDC: National Diabetes Fact Sheet: General Information and National Estimates on Diabetes in the United States, 2007. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; 2008.

  76. Sumner AE: “Half the dsylipidemia of insulin resistance” is the dsylipidemia of insulin-resistant Blacks. Ethn Dis 2009, 19:462–465.

    PubMed  Google Scholar 

  77. Butterworth SW: Influencing patient adherence to treatment guidelines. J Manag Care Pharm 2008, 14(6 Suppl B):21–24.

    PubMed  Google Scholar 

  78. Suarez M, Mullins S: Motivational interviewing and pediatric health behavior interventions. J Dev Behav Pediatr 2008, 29:417–428.

    Article  PubMed  Google Scholar 

  79. Goetz T: 75 million Americans may have something called metabolic syndrome. How Big Pharma turned obesity into a disease—then invented the drugs to cure it. Wired 2006, 10:152–157.

    Google Scholar 

  80. Zimmet P, Alberti G, Kaufman F, et al.: The metabolic syndrome in children and adolescents. Lancet 2007, 369:2059–2061.

    Article  PubMed  Google Scholar 

  81. Andersen LB, Harro M, Sardinha LB, et al.: Physical activity and clustered cardiovascular risk in children: a cross-sectional study (The European Youth Heart Study). Lancet 2006, 368:299–304.

    Article  PubMed  Google Scholar 

  82. Bao W, Srinivasan SR, Wattigney WA, Berenson GS: Persistence of multiple cardiovascular risk clustering related to syndrome X from childhood to young adulthood. The Bogalusa Heart Study. Arch Intern Med 1994, 154:1842–1847.

    Article  CAS  PubMed  Google Scholar 

  83. Eisenmann JC: On the use of a continuous metabolic syndrome score in pediatric research. Cardiovasc Diabetol 2008, 7:17.

    Article  PubMed  Google Scholar 

  84. Lee KK, Fortmann SP, Fair JM, et al.: Insulin resistance independently predicts the progression of coronary artery calcification. Am Heart J 2009, 157:939–945.

    Article  CAS  PubMed  Google Scholar 

  85. Li C, Ford ES, Mokdad AH, Cook S: Recent trends in waist circumference and waist-height ratio among US children and adolescents. Pediatrics 2006, 118:e1390–e1398.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The author has received funding from the National Institutes of Health (grant HD060739-01)

Disclosure

No potential conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. DeBoer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeBoer, M.D. Underdiagnosis of Metabolic Syndrome in Non-Hispanic Black Adolescents: A Call for Ethnic-Specific Criteria. Curr Cardio Risk Rep 4, 302–310 (2010). https://doi.org/10.1007/s12170-010-0104-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12170-010-0104-x

Keywords

Navigation