Skip to main content
Log in

The Association of SNAP25 Gene Polymorphisms in Attention Deficit/Hyperactivity Disorder: a Systematic Review and Meta-Analysis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Attention deficit/hyperactivity disorder (ADHD) is one of the most highly heritable psychiatric disorders in childhood. The risk gene mutation accounts for about 60 to 90 % cases. Synaptosomal-associated protein of 25 kDa (SNAP-25) is a presynaptic plasma membrane protein which is expressed highly and specifically in the neuronal cells. A number of evidences have suggested the role of SNAP-25 in the etiology of ADHD. Notably, the animal model of coloboma mouse mutant bears a ∼2-cM deletion encompassing genes including SNAP25 and displays spontaneous hyperkinetic behavior. Previous investigators have reported association between SNPs in SNAP25 and ADHD, and controversial results were observed. In this study, we analyzed the possible association between six polymorphisms (rs3746544, rs363006, rs1051312, rs8636, rs362549, and rs362998) of SNAP25 and ADHD in a pooled sample of ten family-based studies and four case–control studies by using meta-analysis. The combined analysis results were significant only for rs3746544 (P = 0.010) with mild association (odds ratio (OR) = 1.14). And, the meta-analysis data for rs8636, rs362549, and rs362998 are the first time to be reported; however, no positive association was detected. In conclusion, we report some evidence supporting the association of SNAP25 to ADHD. Future research should emphasize genome-wide association studies in more specific subgroups and larger independent samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kooij SJ, Bejerot S, Blackwell A et al (2010) European consensus statement on diagnosis and treatment of adult ADHD: the European Network Adult ADHD. BMC Psychiatry 10:67

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lange KW, Reichl S, Lange KM et al (2010) The history of attention deficit hyperactivity disorder. Atten Defic Hyperact Disord 2(4):241–255

    Article  PubMed  PubMed Central  Google Scholar 

  3. Willcutt EG (2012) The prevalence of DSM-IV attention-deficit/hyperactivity disorder: a meta-analytic review. Neurotherapeutics 9(3):490–499

    Article  PubMed  PubMed Central  Google Scholar 

  4. Emond V, Joyal C, Poissant H (2009) Structural and functional neuroanatomy of attention-deficit hyperactivity disorder (ADHD). Encéphale 35(2):107–114

    Article  CAS  PubMed  Google Scholar 

  5. Singh I (2008) Beyond polemics: science and ethics of ADHD. Nat Rev Neurosci 9(12):957–964

    Article  CAS  PubMed  Google Scholar 

  6. Childress AC, Berry SA (2012) Pharmacotherapy of attention-deficit hyperactivity disorder in adolescents. Drugs 72(3):309–325

    Article  CAS  PubMed  Google Scholar 

  7. Kenemans JL, Bekker EM, Lijffijt M et al (2005) Attention deficit and impulsivity: selecting, shifting, and stopping. Int J Psychophysiol 58(1):59–70

    Article  CAS  PubMed  Google Scholar 

  8. Biederman J, Faraone SV (2005) Attention-deficit hyperactivity disorder. Lancet 366(9481):237–248

    Article  PubMed  Google Scholar 

  9. Hall CL, Newell K, Taylor J et al (2013) ‘Mind the gap’—mapping services for young people with ADHD transitioning from child to adult mental health services. BMC Psychiatry 13:186

    Article  PubMed  PubMed Central  Google Scholar 

  10. Swift KD, Hall CL, Marimuttu V et al (2013) Transition to adult mental health services for young people with attention deficit/hyperactivity disorder (ADHD): a qualitative analysis of their experiences. BMC Psychiatry 13:74

    Article  PubMed  PubMed Central  Google Scholar 

  11. Simon V, Czobor P, Balint S et al (2009) Prevalence and correlates of adult attention-deficit hyperactivity disorder: meta-analysis. Br J Psychiatry 194(3):204–211

    Article  PubMed  Google Scholar 

  12. Faraone SV, Biederman J, Spencer T et al (2000) Attention-deficit/hyperactivity disorder in adults: an overview. Biol Psychiatry 48(1):9–20

    Article  CAS  PubMed  Google Scholar 

  13. Wilens TE, Faraone SV, Biederman J (2004) Attention-deficit/hyperactivity disorder in adults. JAMA 292(5):619–623

    Article  CAS  PubMed  Google Scholar 

  14. Advokat C, Martino L, Hill BD et al (2007) Continuous Performance Test (CPT) of college students with ADHD, psychiatric disorders, cognitive deficits, or no diagnosis. J Atten Disord 10(3):253–256

    Article  PubMed  Google Scholar 

  15. Thapar A, Cooper M, Eyre O et al (2013) What have we learnt about the causes of ADHD? J Child Psychol Psychiatry 54(1):3–16

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rhodes SM, Coghill DR, Matthews K (2004) Methylphenidate restores visual memory, but not working memory function in attention deficit-hyperkinetic disorder. Psychopharmacology (Berl) 175(3):319–330

    Article  CAS  Google Scholar 

  17. Berry MD (2007) The potential of trace amines and their receptors for treating neurological and psychiatric diseases. Rev Recent Clin Trials 2(1):3–19

    Article  CAS  PubMed  Google Scholar 

  18. Sotnikova TD, Caron MG, Gainetdinov RR (2009) Trace amine-associated receptors as emerging therapeutic targets. Mol Pharmacol 76(2):229–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kebir O, Tabbane K, Sengupta S et al (2009) Candidate genes and neuropsychological phenotypes in children with ADHD: review of association studies. J Psychiatry Neurosci 34(2):88–101

    PubMed  PubMed Central  Google Scholar 

  20. Gizer IR, Ficks C, Waldman ID (2009) Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 126(1):51–90

    Article  CAS  PubMed  Google Scholar 

  21. Hawi Z, Matthews N, Wagner J et al (2013) DNA variation in the SNAP25 gene confers risk to ADHD and is associated with reduced expression in prefrontal cortex. Plos One 8(4):e60274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wallace TL, Bertrand D (2013) Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex. Biochem Pharmacol 85(12):1713–1720

    Article  CAS  PubMed  Google Scholar 

  23. Castellanos FX, Proal E (2012) Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends Cogn Sci 16(1):17–26

    Article  PubMed  Google Scholar 

  24. Cortese S, Kelly C, Chabernaud C et al (2012) Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am J Psychiatry 169(10):1038–1055

    Article  PubMed  Google Scholar 

  25. Bidwell LC, McClernon FJ, Kollins SH (2011) Cognitive enhancers for the treatment of ADHD. Pharmacol Biochem Behav 99(2):262–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cortese S (2012) The neurobiology and genetics of attention-deficit/hyperactivity disorder (ADHD): what every clinician should know. Eur J Paediatr Neurol 16(5):422–433

    Article  PubMed  Google Scholar 

  27. Osen-Sand A, Catsicas M, Staple JK et al (1993) Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature 364(6436):445–448

    Article  CAS  PubMed  Google Scholar 

  28. Kovacs-Nagy R, Hu J, Ronai Z et al (2009) SNAP-25: a novel candidate gene in psychiatric genetics. Neuropsychopharmacol Hung 11(2):89–94

    PubMed  Google Scholar 

  29. Abbott LC, Winzer-Serhan UH (2012) Smoking during pregnancy: lessons learned from epidemiological studies and experimental studies using animal models. Crit Rev Toxicol 42(4):279–303

    Article  CAS  PubMed  Google Scholar 

  30. Burger PH, Goecke TW, Fasching PA et al (2011) How does maternal alcohol consumption during pregnancy affect the development of attention deficit/hyperactivity syndrome in the child. Fortschr Neurol Psychiatr 79(9):500–506

    Article  CAS  PubMed  Google Scholar 

  31. Thapar A, Cooper M, Jefferies R et al (2012) What causes attention deficit hyperactivity disorder? Arch Dis Child 97(3):260–265

    Article  PubMed  Google Scholar 

  32. Maglott DR, Feldblyum TV, Durkin AS et al (1996) Radiation hybrid mapping of SNAP, PCSK2, and THBD (human chromosome 20p). Mamm Genome 7(5):400–401

    Article  CAS  PubMed  Google Scholar 

  33. Bark IC, Wilson MC (1994) Human cDNA clones encoding two different isoforms of the nerve terminal protein SNAP-25. Gene 139(2):291–292

    Article  CAS  PubMed  Google Scholar 

  34. Bark IC (1993) Structure of the chicken gene for SNAP-25 reveals duplicated exon encoding distinct isoforms of the protein. J Mol Biol 233(1):67–76

    Article  CAS  PubMed  Google Scholar 

  35. Pevsner J, Hsu SC, Braun JE et al (1994) Specificity and regulation of a synaptic vesicle docking complex. Neuron 13(2):353–361

    Article  CAS  PubMed  Google Scholar 

  36. Sutton RB, Fasshauer D, Jahn R et al (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395(6700):347–353

    Article  CAS  PubMed  Google Scholar 

  37. Binz T, Blasi J, Yamasaki S et al (1994) Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem 269(3):1617–1620

    CAS  PubMed  Google Scholar 

  38. Blasi J, Chapman ER, Link E et al (1993) Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365(6442):160–163

    Article  CAS  PubMed  Google Scholar 

  39. Schiavo G, Rossetto O, Catsicas S et al (1993) Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J Biol Chem 268(32):23784–23787

    CAS  PubMed  Google Scholar 

  40. Stein A, Weber G, Wahl MC et al (2009) Helical extension of the neuronal SNARE complex into the membrane. Nature 460(7254):525–528

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hess DT, Slater TM, Wilson MC et al (1992) The 25 kDa synaptosomal-associated protein SNAP-25 is the major methionine-rich polypeptide in rapid axonal transport and a major substrate for palmitoylation in adult CNS. J Neurosci 12(12):4634–4641

    CAS  PubMed  Google Scholar 

  42. Jahn R, Scheller RH (2006) SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7(9):631–643

    Article  CAS  PubMed  Google Scholar 

  43. Oyler GA, Higgins GA, Hart RA et al (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol 109(6 Pt 1):3039–3052

    Article  CAS  PubMed  Google Scholar 

  44. Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323(5913):474–477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Chen YA, Scheller RH (2001) SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2(2):98–106

    Article  CAS  PubMed  Google Scholar 

  46. Rizo J, Sudhof TC (2002) Snares and Munc18 in synaptic vesicle fusion. Nat Rev Neurosci 3(8):641–653

    Article  CAS  PubMed  Google Scholar 

  47. Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112(4):519–533

    Article  CAS  PubMed  Google Scholar 

  48. Chua JJ, Kindler S, Boyken J et al (2010) The architecture of an excitatory synapse. J Cell Sci 123(Pt 6):819–823

    Article  CAS  PubMed  Google Scholar 

  49. Mohrmann R, de Wit H, Connell E et al (2013) Synaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggering. J Neurosci 33(36):14417–14430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490(7419):201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zamponi GW (2003) Regulation of presynaptic calcium channels by synaptic proteins. J Pharmacol Sci 92(2):79–83

    Article  CAS  PubMed  Google Scholar 

  52. Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59(6):882–901

    Article  CAS  PubMed  Google Scholar 

  53. Sheng ZH, Rettig J, Cook T et al (1996) Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 379(6564):451–454

    Article  CAS  PubMed  Google Scholar 

  54. Rettig J, Sheng ZH, Kim DK et al (1996) Isoform-specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25. Proc Natl Acad Sci U S A 93(14):7363–7368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Martin-Moutot N, Charvin N, Leveque C et al (1996) Interaction of SNARE complexes with P/Q-type calcium channels in rat cerebellar synaptosomes. J Biol Chem 271(12):6567–6570

    Article  CAS  PubMed  Google Scholar 

  56. Wiser O, Bennett MK, Atlas D (1996) Functional interaction of syntaxin and SNAP-25 with voltage-sensitive L- and N-type Ca2+ channels. Embo J 15(16):4100–4110

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wiser O, Trus M, Hernandez A et al (1999) The voltage sensitive Lc-type Ca2+ channel is functionally coupled to the exocytotic machinery. Proc Natl Acad Sci U S A 96(1):248–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Verderio C, Pozzi D, Pravettoni E et al (2004) SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization. Neuron 41(4):599–610

    Article  CAS  PubMed  Google Scholar 

  59. Pozzi D, Condliffe S, Bozzi Y et al (2008) Activity-dependent phosphorylation of Ser187 is required for SNAP-25-negative modulation of neuronal voltage-gated calcium channels. Proc Natl Acad Sci U S A 105(1):323–328

    Article  CAS  PubMed  Google Scholar 

  60. Condliffe SB, Corradini I, Pozzi D et al (2010) Endogenous SNAP-25 regulates native voltage-gated calcium channels in glutamatergic neurons. J Biol Chem 285(32):24968–24976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lidow MS (2003) Calcium signaling dysfunction in schizophrenia: a unifying approach. Brain Res Brain Res Rev 43(1):70–84

    Article  CAS  PubMed  Google Scholar 

  62. Braunewell KH (2005) The darker side of Ca2+ signaling by neuronal Ca2+-sensor proteins: from Alzheimer’s disease to cancer. Trends Pharmacol Sci 26(7):345–351

    Article  CAS  PubMed  Google Scholar 

  63. Bronk P, Deak F, Wilson MC et al (2007) Differential effects of SNAP-25 deletion on Ca2+ -dependent and Ca2+ -independent neurotransmission. J Neurophysiol 98(2):794–806

    Article  CAS  PubMed  Google Scholar 

  64. Delgado-Martinez I, Nehring RB, Sorensen JB (2007) Differential abilities of SNAP-25 homologs to support neuronal function. J Neurosci 27(35):9380–9391

    Article  CAS  PubMed  Google Scholar 

  65. Wang Y, Dong Y, Song H et al (2012) Involvement of gecko SNAP25b in spinal cord regeneration by promoting outgrowth and elongation of neurites. Int J Biochem Cell Biol 44(12):2288–2298

    Article  CAS  PubMed  Google Scholar 

  66. Martinez-Arca S, Coco S, Mainguy G et al (2001) A common exocytotic mechanism mediates axonal and dendritic outgrowth. J Neurosci 21(11):3830–3838

    CAS  PubMed  Google Scholar 

  67. Wang W, Wang F, Liu J et al (2014) SNAP25 ameliorates sensory deficit in rats with spinal cord transection. Mol Neurobiol 50(2):290–304

    Article  CAS  PubMed  Google Scholar 

  68. Aikawa Y, Xia X, Martin TF (2006) SNAP25, but not syntaxin 1A, recycles via an ARF6-regulated pathway in neuroendocrine cells. Mol Biol Cell 17(2):711–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Osen-Sand A, Staple JK, Naldi E et al (1996) Common and distinct fusion proteins in axonal growth and transmitter release. J Comp Neurol 367(2):222–234

    Article  CAS  PubMed  Google Scholar 

  70. Wu CS, Lin JT, Chien CL et al (2011) Type VI adenylyl cyclase regulates neurite extension by binding to Snapin and Snap25. Mol Cell Biol 31(24):4874–4886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Catsicas S, Larhammar D, Blomqvist A et al (1991) Expression of a conserved cell-type-specific protein in nerve terminals coincides with synaptogenesis. Proc Natl Acad Sci U S A 88(3):785–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Selak S, Paternain AV, Aller MI et al (2009) A role for SNAP25 in internalization of kainate receptors and synaptic plasticity. Neuron 63(3):357–371

    Article  CAS  PubMed  Google Scholar 

  73. Lau CG, Takayasu Y, Rodenas-Ruano A et al (2010) SNAP-25 is a target of protein kinase C phosphorylation critical to NMDA receptor trafficking. J Neurosci 30(1):242–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thapar A, O’Donovan M, Owen MJ (2005) The genetics of attention deficit hyperactivity disorder. Hum Mol Genet 14(2):R275–R282

    Article  CAS  PubMed  Google Scholar 

  75. Rizo J, Sudhof TC (2012) The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices—guilty as charged? Annu Rev Cell Dev Biol 28:279–308

    Article  CAS  PubMed  Google Scholar 

  76. Washbourne P, Thompson PM, Carta M et al (2002) Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 5(1):19–26

    CAS  PubMed  Google Scholar 

  77. Bark C, Bellinger FP, Kaushal A et al (2004) Developmentally regulated switch in alternatively spliced SNAP-25 isoforms alters facilitation of synaptic transmission. J Neurosci 24(40):8796–8805

    Article  CAS  PubMed  Google Scholar 

  78. Hess EJ, Jinnah HA, Kozak CA et al (1992) Spontaneous locomotor hyperactivity in a mouse mutant with a deletion including the Snap gene on chromosome 2. J Neurosci 12(7):2865–2874

    CAS  PubMed  Google Scholar 

  79. Steffensen SC, Wilson MC, Henriksen SJ (1996) Coloboma contiguous gene deletion encompassing Snap alters hippocampal plasticity. Synapse 22(3):281–289

    Article  CAS  PubMed  Google Scholar 

  80. Bruno KJ, Freet CS, Twining RC et al (2007) Abnormal latent inhibition and impulsivity in coloboma mice, a model of ADHD. Neurobiol Dis 25(1):206–216

    Article  CAS  PubMed  Google Scholar 

  81. Hess EJ, Collins KA, Wilson MC (1996) Mouse model of hyperkinesis implicates SNAP-25 in behavioral regulation. J Neurosci 16(9):3104–3111

    CAS  PubMed  Google Scholar 

  82. Wilson MC (2000) Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder. Neurosci Biobehav Rev 24(1):51–57

    Article  CAS  PubMed  Google Scholar 

  83. Steffensen SC, Henriksen SJ, Wilson MC (1999) Transgenic rescue of SNAP-25 restores dopamine-modulated synaptic transmission in the coloboma mutant. Brain Res 847(2):186–195

    Article  CAS  PubMed  Google Scholar 

  84. Jones MD, Williams ME, Hess EJ (2001) Abnormal presynaptic catecholamine regulation in a hyperactive SNAP-25-deficient mouse mutant. Pharmacol Biochem Behav 68(4):669–676

    Article  CAS  PubMed  Google Scholar 

  85. Fortin GD, Desrosiers CC, Yamaguchi N et al (2006) Basal somatodendritic dopamine release requires snare proteins. J Neurochem 96(6):1740–1749

    Article  CAS  PubMed  Google Scholar 

  86. Raber J, Mehta PP, Kreifeldt M et al (1997) Coloboma hyperactive mutant mice exhibit regional and transmitter-specific deficits in neurotransmission. J Neurochem 68(1):176–186

    Article  CAS  PubMed  Google Scholar 

  87. Jones MD, Williams ME, Hess EJ (2001) Expression of catecholaminergic mRNAs in the hyperactive mouse mutant coloboma. Brain Res Mol Brain Res 96(1-2):114–121

    Article  CAS  PubMed  Google Scholar 

  88. Li Q, Wong JH, Lu G et al (2009) Gene expression of synaptosomal-associated protein 25 (SNAP-25) in the prefrontal cortex of the spontaneously hypertensive rat (SHR). Biochim Biophys Acta 1792(8):766–776

    Article  CAS  PubMed  Google Scholar 

  89. Nagy G, Milosevic I, Fasshauer D et al (2005) Alternative splicing of SNAP-25 regulates secretion through nonconservative substitutions in the SNARE domain. Mol Biol Cell 16(12):5675–5685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chapman ER (2002) Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol 3(7):498–508

    Article  CAS  PubMed  Google Scholar 

  91. Corradini I, Donzelli A, Antonucci F et al (2014) Epileptiform activity and cognitive deficits in SNAP-25(+/-) mice are normalized by antiepileptic drugs. Cereb Cortex 24(2):364–376

    Article  PubMed  Google Scholar 

  92. Barr CL, Feng Y, Wigg K et al (2000) Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Mol Psychiatry 5(4):405–409

    Article  CAS  PubMed  Google Scholar 

  93. Brophy K, Hawi Z, Kirley A et al (2002) Synaptosomal-associated protein 25 (SNAP-25) and attention deficit hyperactivity disorder (ADHD): evidence of linkage and association in the Irish population. Mol Psychiatry 7(8):913–917

    Article  CAS  PubMed  Google Scholar 

  94. Gao XP, Su LY, Zhao AL et al (2009) Association of 14 polymorphisms in the five candidate genes and attention deficit hyperactivity disorder. Zhongguo Dang Dai Er Ke Za Zhi 11(8):617–622

    CAS  PubMed  Google Scholar 

  95. Galvez JM, Forero DA, Fonseca DJ et al (2014) Evidence of association between SNAP25 gene and attention deficit hyperactivity disorder in a Latin American sample. Atten Defic Hyperact Disord 6(1):19–23

    Article  PubMed  Google Scholar 

  96. Sarkar K, Bhaduri N, Ghosh P et al (2012) Role of SNAP25 explored in eastern Indian attention deficit hyperactivity disorder probands. Neurochem Res 37(2):349–357

    Article  CAS  PubMed  Google Scholar 

  97. Feng Y, Crosbie J, Wigg K et al (2005) The SNAP25 gene as a susceptibility gene contributing to attention-deficit hyperactivity disorder. Mol Psychiatry 10(11):998–1005, 973

    Article  CAS  PubMed  Google Scholar 

  98. Mill J, Richards S, Knight J et al (2004) Haplotype analysis of SNAP-25 suggests a role in the aetiology of ADHD. Mol Psychiatry 9(8):801–810

    Article  CAS  PubMed  Google Scholar 

  99. Kim JW, Biederman J, Arbeitman L et al (2007) Investigation of variation in SNAP-25 and ADHD and relationship to co-morbid major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 144B(6):781–790

    Article  CAS  PubMed  Google Scholar 

  100. Ilott NE, Saudino KJ, Asherson P (2010) Genetic influences on attention deficit hyperactivity disorder symptoms from age 2 to 3: a quantitative and molecular genetic investigation. BMC Psychiatry 10:102

    Article  PubMed  PubMed Central  Google Scholar 

  101. Renner TJ, Walitza S, Dempfle A et al (2008) Allelic variants of SNAP25 in a family-based sample of ADHD. J Neural Transm 115(2):317–321

    Article  CAS  PubMed  Google Scholar 

  102. Lau J, Ioannidis JP, Schmid CH (1997) Quantitative synthesis in systematic reviews. Ann Intern Med 127(9):820–826

    Article  CAS  PubMed  Google Scholar 

  103. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558

    Article  PubMed  Google Scholar 

  104. Schmidt FL, Oh IS, Hayes TL (2009) Fixed- versus random-effects models in meta-analysis: model properties and an empirical comparison of differences in results. Br J Math Stat Psychol 62(Pt 1):97–128

    Article  PubMed  Google Scholar 

  105. Nicodemus KK (2008) Catmap: case-control and TDT meta-analysis package. BMC Bioinf 9:130

    Article  CAS  Google Scholar 

  106. Evangelou E, Trikalinos TA, Salanti G et al (2006) Family-based versus unrelated case-control designs for genetic associations. PLoS Genet 2(8):e123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Stevenson RD, Wolraich ML (1989) Stimulant medication therapy in the treatment of children with attention deficit hyperactivity disorder. Pediatr Clin North Am 36(5):1183–1197

    Article  CAS  PubMed  Google Scholar 

  108. Greenhill L, Beyer DH, Finkleson J et al (2002) Guidelines and algorithms for the use of methylphenidate in children with attention-deficit/hyperactivity disorder. J Atten Disord 6(Suppl 1):S89–S100

    PubMed  Google Scholar 

  109. Jensen V, Rinholm JE, Johansen TJ et al (2009) N-methyl-D-aspartate receptor subunit dysfunction at hippocampal glutamatergic synapses in an animal model of attention-deficit/hyperactivity disorder. Neuroscience 158(1):353–364

    Article  CAS  PubMed  Google Scholar 

  110. Forero DA, Casadesus G, Perry G et al (2006) Synaptic dysfunction and oxidative stress in Alzheimer’s disease: emerging mechanisms. J Cell Mol Med 10(3):796–805

    Article  CAS  PubMed  Google Scholar 

  111. Ramocki MB, Zoghbi HY (2008) Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature 455(7215):912–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Forero DA, Arboleda GH, Vasquez R et al (2009) Candidate genes involved in neural plasticity and the risk for attention-deficit hyperactivity disorder: a meta-analysis of 8 common variants. J Psychiatry Neurosci 34(5):361–366

    PubMed  PubMed Central  Google Scholar 

  113. Faraone SV, Perlis RH, Doyle AE et al (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57(11):1313–1323

    Article  CAS  PubMed  Google Scholar 

  114. Carroll LS, Kendall K, O’Donovan MC et al (2009) Evidence that putative ADHD low risk alleles at SNAP25 may increase the risk of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 150B(7):893–899

    Article  CAS  PubMed  Google Scholar 

  115. Gosso MF, de Geus EJ, van Belzen MJ et al (2006) The SNAP-25 gene is associated with cognitive ability: evidence from a family-based study in two independent Dutch cohorts. Mol Psychiatry 11(9):878–886

    Article  CAS  PubMed  Google Scholar 

  116. Xu X, Rakovski C, Xu X et al (2006) An efficient family-based association test using multiple markers. Genet Epidemiol 30(7):620–626

    Article  PubMed  Google Scholar 

  117. Allen NC, Bagade S, McQueen MB et al (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40(7):827–834

    Article  CAS  PubMed  Google Scholar 

  118. Cordell HJ, Clayton DG (2005) Genetic association studies. Lancet 366(9491):1121–1131

    Article  PubMed  Google Scholar 

  119. Kustanovich V, Merriman B, McGough J et al (2003) Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder. Mol Psychiatry 8(3):309–315

    Article  CAS  PubMed  Google Scholar 

  120. Xu Z, Taylor JA (2009) SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res 37:W600–W605, Web Server issue

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  CAS  PubMed  Google Scholar 

  122. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported partially by the National Natural Science Foundation of China (81361120245, 31571039, 81101016, 81400816), Top-Notch Young Talents Program of China of 2014 to Dr. Ling-Qiang Zhu, Program of Outstanding Youth of Hubei Province, China (2014CFA017), and Program for Changjiang Scholars and Innovative Research Team in University (No. IRT13016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling-Qiang Zhu or Jing Wu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Yun-Sheng Liu, Xuan Dai and Wei Wu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YS., Dai, X., Wu, W. et al. The Association of SNAP25 Gene Polymorphisms in Attention Deficit/Hyperactivity Disorder: a Systematic Review and Meta-Analysis. Mol Neurobiol 54, 2189–2200 (2017). https://doi.org/10.1007/s12035-016-9810-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9810-9

Keywords

Navigation