Skip to main content

Advertisement

Log in

Loss of Spatial Memory, Learning, and Motor Function During Normal Aging Is Accompanied by Changes in Brain Presenilin 1 and 2 Expression Levels

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mutations in presenilin (PS) proteins cause familial Alzheimer’s disease. We herein tested the hypothesis that the expression levels of PS proteins are differentially affected during healthy aging, in the absence of pathological mutations. We used a preclinical model for aging to identify associations between PS expression and quantitative behavioral parameters for spatial memory and learning and motor function. We identified significant changes of PS protein expression in both cerebellum and forebrain that correlated with the performance in behavioral paradigms for motor function and memory and learning. Overall, PS1 levels were decreased, while PS2 levels were increased in aged mice compared with young controls. Our study presents novel evidence for the differential expression of PS proteins in a nongenetic model for aging, resulting in an overall increase of the PS2 to PS1 ratio. Our findings provide a novel mechanistic basis for molecular and functional changes during normal aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alzheimer's Association (2012) 2012 Alzheimer’s disease facts and figures. Alzheimers Dement 8(2):131–168. doi:10.1016/j.jalz.2012.02.001

    Article  Google Scholar 

  2. Mattson MP (2010) ER calcium and Alzheimer’s disease: in a state of flux. Sci Signal 3(114):pe10. doi:10.1126/scisignal.3114pe10

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bergmans BA, De Strooper B (2010) Gamma-secretases: from cell biology to therapeutic strategies. Lancet Neurol 9(2):215–226. doi:10.1016/S1474-4422(09)70332-1

    Article  CAS  PubMed  Google Scholar 

  4. Alzheimer’s Disease Collaborative Group (1995) The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nat Genet 11(2):219–222. doi:10.1038/ng1095-219

    Article  Google Scholar 

  5. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HA, Haines JL, Perkicak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375(6534):754–760. doi:10.1038/375754a0

    Article  CAS  PubMed  Google Scholar 

  6. Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada CM, Kim G, Seekins S, Yager D, Slunt HH, Wang R, Seeger M, Levey AI, Gandy SE, Copeland NG, Jenkins NA, Price DL, Younkin SG, Sisodia SS (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1–42/1–40 ratio in vitro and in vivo. Neuron 17(5):1005–1013. doi:10.1016/S0896-6273(00)80230-5

    Article  CAS  PubMed  Google Scholar 

  7. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K et al (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269(5226):973–977. doi:10.1126/science.7638622

    Article  CAS  PubMed  Google Scholar 

  8. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T et al (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376(6543):775–778. doi:10.1038/376775a0

    Article  CAS  PubMed  Google Scholar 

  9. Nimmerjahn A (2009) Astrocytes going live: advances and challenges. J Physiol 587(Pt 8):1639–1647. doi:10.1113/jphysiol.2008.167171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cowburn RF, Popescu BO, Ankarcrona M, Dehvari N, Cedazo-Minguez A (2007) Presenilin-mediated signal transduction. Physiol Behav 92(1–2):93–97. doi:10.1016/j.physbeh.2007.05.053

    Article  CAS  PubMed  Google Scholar 

  11. LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3(11):862–872. doi:10.1038/nrn960

    Article  CAS  PubMed  Google Scholar 

  12. Payne AJ, Gerdes BC, Naumchuk Y, McCalley AE, Kaja S, Koulen P (2013) Presenilins regulate the cellular activity of ryanodine receptors differentially through isotype-specific N-terminal cysteines. Exp Neurol 250C:143–150. doi:10.1016/j.expneurol.2013.09.001

    Article  Google Scholar 

  13. Hayrapetyan V, Rybalchenko V, Rybalchenko N, Koulen P (2008) The N-terminus of presenilin-2 increases single channel activity of brain ryanodine receptors through direct protein-protein interaction. Cell Calcium 44(5):507–518. doi:10.1016/j.ceca.2008.03.004

    Article  CAS  PubMed  Google Scholar 

  14. Rybalchenko V, Hwang SY, Rybalchenko N, Koulen P (2008) The cytosolic N-terminus of presenilin-1 potentiates mouse ryanodine receptor single channel activity. Int J Biochem Cell Biol 40(1):84–97. doi:10.1016/j.biocel.2007.06.023

    Article  CAS  PubMed  Google Scholar 

  15. Chan SL, Mayne M, Holden CP, Geiger JD, Mattson MP (2000) Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J Biol Chem 275(24):18195–18200. doi:10.1074/jbc.M000040200

    Article  CAS  PubMed  Google Scholar 

  16. Meyers MB, Pickel VM, Sheu SS, Sharma VK, Scotto KW, Fishman GI (1995) Association of sorcin with the cardiac ryanodine receptor. J Biol Chem 270(44):26411–26418. doi:10.1074/jbc.270.44.26411

    Article  CAS  PubMed  Google Scholar 

  17. Zalk R, Lehnart SE, Marks AR (2007) Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem 76:367–385. doi:10.1146/annurev.biochem.76.053105.094237

    Article  CAS  PubMed  Google Scholar 

  18. Stutzmann GE, Smith I, Caccamo A, Oddo S, Parker I, Laferla F (2007) Enhanced ryanodine-mediated calcium release in mutant PS1-expressing Alzheimer’s mouse models. Ann N Y Acad Sci 1097:265–277. doi:10.1196/annals.1379.025

    Article  CAS  PubMed  Google Scholar 

  19. Demuro A, Parker I, Stutzmann GE (2010) Calcium signaling and amyloid toxicity in Alzheimer disease. J Biol Chem 285(17):12463–12468. doi:10.1074/jbc.R109.080895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goussakov I, Miller MB, Stutzmann GE (2010) NMDA-mediated Ca(2+) influx drives aberrant ryanodine receptor activation in dendrites of young Alzheimer’s disease mice. J Neurosci 30(36):12128–12137. doi:10.1523/JNEUROSCI.2474-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stutzmann GE, Smith I, Caccamo A, Oddo S, Laferla FM, Parker I (2006) Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice. J Neurosci 26(19):5180–5189. doi:10.1523/JNEUROSCI.0739-06.2006

    Article  CAS  PubMed  Google Scholar 

  22. Smith IF, Hitt B, Green KN, Oddo S, LaFerla FM (2005) Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer’s disease. J Neurochem 94(6):1711–1718. doi:10.1111/j.1471-4159.2005.03332.x

    Article  CAS  PubMed  Google Scholar 

  23. Sama DM, Norris CM (2013) Calcium dysregulation and neuroinflammation: discrete and integrated mechanisms for age-related synaptic dysfunction. Ageing Res Rev 12(4):982–995. doi:10.1016/j.arr.2013.05.008

    Article  CAS  PubMed  Google Scholar 

  24. Hayflick L (2007) Biological aging is no longer an unsolved problem. Ann N Y Acad Sci 1100(1):1–13. doi:10.1196/annals.1395.001

    Article  CAS  PubMed  Google Scholar 

  25. Collier TJ, Coleman PD (1991) Evidence from rodent studies. Neurobiol Aging 12(6):685–693. doi:10.1016/0197-4580(91)90122-Z

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen PV (2006) Comparative plasticity of brain synapses in inbred mouse strains. J Exp Biol 209(Pt 12):2293–2303. doi:10.1242/jeb.01985

    Article  CAS  PubMed  Google Scholar 

  27. Dubey A, Forster MJ, Lal H, Sohal RS (1996) Effect of age and caloric intake on protein oxidation in different brain regions and on behavioral functions of the mouse. Arch Biochem Biophys 333(1):189–197. doi:10.1006/abbi.1996.0380

    Article  CAS  PubMed  Google Scholar 

  28. Forster MJ, Dubey A, Dawson KM, Stutts WA, Lal H, Sohal RS (1996) Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci U S A 93(10):4765–4769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sumien N, Heinrich KR, Sohal RS, Forster MJ (2004) Short-term vitamin E intake fails to improve cognitive or psychomotor performance of aged mice. Free Radic Biol Med 36(11):1424–1433. doi:10.1016/j.freeradbiomed.2004.02.081

    Article  CAS  PubMed  Google Scholar 

  30. McDonald SR, Forster MJ (2005) Lifelong vitamin E intake retards age-associated decline of spatial learning ability in apoE-deficient mice. Age 27(1):5–16. doi:10.1007/s11357-005-4003-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gallagher M, Rapp PR (1997) The use of animal models to study the effects of aging on cognition. Annu Rev Psychol 48:339–370. doi:10.1146/annurev.psych.48.1.339

    Article  CAS  PubMed  Google Scholar 

  32. Rapp PR, Amaral DG (1992) Individual differences in the cognitive and neurobiological consequences of normal aging. Trends Neurosci 15(9):340–345

    Article  CAS  PubMed  Google Scholar 

  33. Baxter MG, Gallagher M (1996) Neurobiological substrates of behavioral decline: models and data analytic strategies for individual differences in aging. Neurobiol Aging 17(3):491–495. doi:10.1016/0197-4580(96)00011-5

    Article  CAS  PubMed  Google Scholar 

  34. Calhoun ME, Kurth D, Phinney AL, Long JM, Hengemihle J, Mouton PR, Ingram DK, Jucker M (1998) Hippocampal neuron and synaptophysin-positive bouton number in aging C57BL/6 mice. Neurobiol Aging 19(6):599–606. doi:10.1016/S0197-4580(98)00098-0

    Article  CAS  PubMed  Google Scholar 

  35. Ingram DK (1996) Brain-behavior linkages in aged rodent models: strategies for examining individual differences. Neurobiol Aging 17(3):497–499

    Article  CAS  PubMed  Google Scholar 

  36. Nicholson DA, Yoshida R, Berry RW, Gallagher M, Geinisman Y (2004) Reduction in size of perforated postsynaptic densities in hippocampal axospinous synapses and age-related spatial learning impairments. J Neurosci 24(35):7648–7653. doi:10.1523/JNEUROSCI.1725-04.2004

    Article  CAS  PubMed  Google Scholar 

  37. Kaja S, Sumien N, Borden PK, Khullar N, Iqbal M, Collins JL, Forster MJ, Koulen P (2012) Homer-1a immediate early gene expression correlates with better cognitive performance in aging. Age (Dordr) 35(5):1799–1808. doi:10.1007/s11357-012-9479-6

    Article  Google Scholar 

  38. Burroughs SL, Kaja S, Koulen P (2011) Quantification of deficits in spatial visual function of mouse models for glaucoma. Invest Ophthalmol Vis Sci 52(6):3654–3659. doi:10.1167/iovs.10-7106

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kaja S, Naumchuk Y, Grillo SL, Borden PK, Koulen P (2014) Differential up-regulation of Vesl-1/Homer 1 protein isoforms associated with decline in visual performance in a preclinical glaucoma model. Vis Res 94:16–23. doi:10.1016/j.visres.2013.10.018

    Article  PubMed  Google Scholar 

  40. Lee MK, Slunt HH, Martin LJ, Thinakaran G, Kim G, Gandy SE, Seeger M, Koo E, Price DL, Sisodia SS (1996) Expression of presenilin 1 and 2 (PS1 and PS2) in human and murine tissues. J Neurosci 16(23):7513–7525

    CAS  PubMed  Google Scholar 

  41. Deng G, Su JH, Cotman CW (1996) Gene expression of Alzheimer-associated presenilin-2 in the frontal cortex of Alzheimer and aged control brain. FEBS Lett 394(1):17–20. doi:10.1016/0014-5793(96)00922-2

    Article  CAS  PubMed  Google Scholar 

  42. Page K, Hollister R, Tanzi RE, Hyman BT (1996) In situ hybridization analysis of presenilin 1 mRNA in Alzheimer disease and in lesioned rat brain. Proc Natl Acad Sci U S A 93(24):14020–14024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Elder GA, Gama Sosa MA, De Gasperi R, Dickstein DL, Hof PR (2010) Presenilin transgenic mice as models of Alzheimer’s disease. Brain Struct Funct 214(2–3):127–143. doi:10.1007/s00429-009-0227-3

    Article  CAS  PubMed  Google Scholar 

  44. Thakur MK, Ghosh S (2007) Age and sex dependent alteration in presenilin expression in mouse cerebral cortex. Cell Mol Neurobiol 27(8):1059–1067. doi:10.1007/s10571-007-9214-5

    Article  CAS  PubMed  Google Scholar 

  45. Silveyra MX, Garcia-Ayllon MS, Serra-Basante C, Mazzoni V, Garcia-Gutierrez MS, Manzanares J, Culvenor JG, Saez-Valero J (2012) Changes in acetylcholinesterase expression are associated with altered presenilin-1 levels. Neurobiol Aging 33(3):627 e627–627 e637. doi:10.1016/j.neurobiolaging.2011.04.006

    Google Scholar 

  46. Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221(2):555–563. doi:10.1016/j.bbr.2010.11.058

    Article  CAS  PubMed  Google Scholar 

  47. Sumien N, Sims MN, Taylor HJ, Forster MJ (2006) Profiling psychomotor and cognitive aging in four-way cross mice. Age 28:265–282. doi:10.1007/s11357-006-9015-7

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hatsopoulos NG, Suminski AJ (2011) Sensing with the motor cortex. Neuron 72(3):477–487. doi:10.1016/j.neuron.2011.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lamont MG, Weber JT (2012) The role of calcium in synaptic plasticity and motor learning in the cerebellar cortex. Neurosci Biobehav Rev 36(4):1153–1162. doi:10.1016/j.neubiorev.2012.01.005

    Article  CAS  PubMed  Google Scholar 

  50. Wang H, Megill A, He K, Kirkwood A, Lee HK (2012) Consequences of inhibiting amyloid precursor protein processing enzymes on synaptic function and plasticity. Neural Plast 2012:272374. doi:10.1155/2012/272374

    PubMed  PubMed Central  Google Scholar 

  51. Canevelli M, Piscopo P, Talarico G, Vanacore N, Blasimme A, Crestini A, Tosto G, Troili F, Lenzi GL, Confaloni A, Bruno G (2014) Familial Alzheimer’s disease sustained by presenilin 2 mutations: systematic review of literature and genotype-phenotype correlation. Neurosci Biobehav Rev 42C:170–179. doi:10.1016/j.neubiorev.2014.02.010

    Article  Google Scholar 

  52. Larner AJ, Doran M (2009) Genotype-phenotype relationships of presenilin-1 mutations in Alzheimer’s disease: an update. J Alzheimers Dis 17(2):259–265. doi:10.3233/JAD-2009-1042

    Article  CAS  PubMed  Google Scholar 

  53. Tu H, Nelson O, Bezprozvanny A, Wang Z, Lee SF, Hao YH, Serneels L, De Strooper B, Yu G, Bezprozvanny I (2006) Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer’s disease-linked mutations. Cell 126(5):981–993. doi:10.1016/j.cell.2006.06.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shilling D, Mak DO, Kang DE, Foskett JK (2012) Lack of evidence for presenilins as endoplasmic reticulum Ca2+ leak channels. J Biol Chem 287(14):10933–10944. doi:10.1074/jbc.M111.300491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Khachaturian ZS (1984) Scientific challenges and opportunities related to Alzheimer’s disease. Clin Pharm 3(5):522–523

    CAS  PubMed  Google Scholar 

  56. Landfield PW, Pitler TA (1984) Prolonged Ca2+-dependent afterhyperpolarizations in hippocampal neurons of aged rats. Science 226(4678):1089–1092

    Article  CAS  PubMed  Google Scholar 

  57. Ghosh S, Thakur MK (2008) PS1 expression is downregulated by gonadal steroids in adult mouse brain. Neurochem Res 33(3):365–369. doi:10.1007/s11064-007-9424-8

    Article  CAS  PubMed  Google Scholar 

  58. Ghosh S, Thakur MK (2008) PS2 protein expression is upregulated by sex steroids in the cerebral cortex of aging mice. Neurochem Int 52(3):363–367. doi:10.1016/j.neuint.2007.07.015

    Article  CAS  PubMed  Google Scholar 

  59. Oda A, Tamaoka A, Araki W (2010) Oxidative stress up-regulates presenilin 1 in lipid rafts in neuronal cells. J Neurosci Res 88(5):1137–1145. doi:10.1002/jnr.22271

    CAS  PubMed  Google Scholar 

  60. Kodam A, Vetrivel KS, Thinakaran G, Kar S (2008) Cellular distribution of gamma-secretase subunit nicastrin in the developing and adult rat brains. Neurobiol Aging 29(5):724–738. doi:10.1016/j.neurobiolaging.2006.12.005

    Article  CAS  PubMed  Google Scholar 

  61. Tabuchi K, Chen G, Sudhof TC, Shen J (2009) Conditional forebrain inactivation of nicastrin causes progressive memory impairment and age-related neurodegeneration. J Neurosci 29(22):7290–7301. doi:10.1523/JNEUROSCI.1320-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sesele K, Thanopoulou K, Paouri E, Tsefou E, Klinakis A, Georgopoulos S (2013) Conditional inactivation of nicastrin restricts amyloid deposition in an Alzheimer’s disease mouse model. Aging Cell 12(6):1032–1040. doi:10.1111/acel.12131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported in part by grants AG022550, AG027956 (MJF, NS, and PK), and AG010485 from NIH/NIA and RR022570 and RR027093 from NIH/NCRR (PK). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Additional support by the Felix and Carmen Sabates Missouri Endowed Chair in Vision Research, the Vision Research Foundation of Kansas City and a departmental challenge grant by Research to Prevent Blindness (PK) are gratefully acknowledged. The authors thank Margaret, Richard, and Sara Koulen for generous support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Koulen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

(DOCX 328 kb)

Supplemental Fig. 2

(DOCX 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaja, S., Sumien, N., Shah, V.V. et al. Loss of Spatial Memory, Learning, and Motor Function During Normal Aging Is Accompanied by Changes in Brain Presenilin 1 and 2 Expression Levels. Mol Neurobiol 52, 545–554 (2015). https://doi.org/10.1007/s12035-014-8877-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8877-4

Keywords

Navigation