Skip to main content
Log in

Long-Lasting Maintenance of Learning-Induced Enhanced Neuronal Excitability: Mechanisms and Functional Significance

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Pyramidal neurons in the piriform cortex of olfactory discrimination trained rats show enhanced intrinsic neuronal excitability that lasts for several days after learning. Such enhanced intrinsic excitability is mediated by long-term reduction in the postburst after hyperpolarization which is generated by repetitive spike firing. The molecular machinery underlying such long-lasting modulation of intrinsic excitability, as well as its exceptional durability, is yet to be fully described. In this review, we present recent advancements that reveal the identity of the current that is modulated after learning and the second messenger system by which enhanced excitability is maintained. We also discuss the significance of such long-lasting modulation to the local network’s sensitivity to noradrenaline, a major learning-relevant neuromodulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moyer JR, Thompson LT, Disterhoft JF (1996) Trace eyeblink conditioning increases CA1 excitability in a transient and learning specific manner. J Neurosci 16:5536–5546

    PubMed  CAS  Google Scholar 

  2. Thompson LT, Moyer JR, Disterhoft JF (1996) Transient changes in excitability of Rabbit CA3 neurons with a time course appropriate to support memory consolidation. J Neurophysiol 76:1836–1849

    PubMed  CAS  Google Scholar 

  3. Oh MM, Kuo AG, Wu WW, Sametsky EA, Disterhoft JF (2003) Watermaze learning enhances excitability of CA1 pyramidal neurons. J Neurophysiol 90(4):2171–2179

    Article  PubMed  Google Scholar 

  4. Saar D, Grossman Y, Barkai E (1998) Reduced after-hyperpolarization in rat piriform cortex pyramidal neurons is associated with increased learning capability during operant conditioning. Eur J Neurosci 10:1518–1523

    Article  PubMed  CAS  Google Scholar 

  5. Saar D, Grossman Y, Barkai E (2001) Long lasting cholinergic modulation underlies rule learning in rats. J Neuorsci 21(4):1385–1392

    CAS  Google Scholar 

  6. Saar D, Barkai E (2003) Long-term modifications in intrinsic neuronal properties and rule learning in rats. Eur J Neurosci 17:2727–2734

    Article  PubMed  Google Scholar 

  7. Schreurs BG, Gusev PA, Tomsic D, Alkon DL, Shi T (1998) ntracellular correlates of acquisition and long-term memory of classical conditioning in Purkinje cell dendrites in slices of rabbit cerebellar lobule HVI. J Neurosci 18(14):5498–5507

    PubMed  CAS  Google Scholar 

  8. Alkon DL, Nelson TJ, Zhao W, Cavallaro S (1998) Time domains of neuronal Ca2+ signaling and associative memory: steps through a calexcitin, ryanodine receptor, K+ channel cascade. TINS 21(12):529–537

    PubMed  CAS  Google Scholar 

  9. Zelcer I, Cohen H, Richter-Levin G, Lebiosn T, Grossberger T, Barkai E (2006) A cellular correlate of learning-induced metaplasticity in the hippocampus. Cerebral Cortex 16(4):460–468

    Article  PubMed  Google Scholar 

  10. Schwindt PC, Spain WJ, Foehring RC, Chubb MC, Crill WE (1988) Slow conductances in neurons from cat sensorimotor cortex in-vitro and their role in slow excitability changes. J Neurophysiol 59(2):450–467

    PubMed  CAS  Google Scholar 

  11. Madison DV, Nicoll RA (1984) Voltage clamp analysis of cholinergic action in the hippocampus. J Physiol 354:319–331

    PubMed  CAS  Google Scholar 

  12. Constanti A, Sim JA (1987) Calcium-dependent potassium conductance in guinea-pig olfactory cortex neurons in vitro. J Physiol 387:173–194

    PubMed  CAS  Google Scholar 

  13. Barkai E, Hasselmo ME (1994) Modulation of the input/output function of rat piriform cortex pyramidal cells. J Neurophysiol 72(2):644–658

    PubMed  CAS  Google Scholar 

  14. Moyer JR, Power JM, Thompson LT, Disterhoft JF (2000) Increased excitability of aged rabbit CA1 neurons after trace eyeblink conditioning. J Neurosci 20(14):5476–5482

    PubMed  CAS  Google Scholar 

  15. Sah P, Bekkers JM (1996) Apical dendritic location of slow afterhyperpolarization current in hippocampal pyramidal neurons: implications for the integration of long-term potentiation. J Neurosci 16(15):4537–4542

    PubMed  CAS  Google Scholar 

  16. Norris CM, Halpain S, Foster TC (1998) Reversal of age-related alterations in synaptic plasticity by blockade of L-type channels. J Neurosci 18(9):3171–3179

    PubMed  CAS  Google Scholar 

  17. Barkai E, Saar D (2001) Cellular correlates of olfactory learning in the rat piriform cortex. Rev Neurosci 12(2):111–120

    PubMed  CAS  Google Scholar 

  18. Saar D, Grossman Y, Barkai E (1999) Reduced synaptic facilitation between pyramidal neurons in the piriform cortex after odor learning. J Neurosci 19(19):8616–8622

    PubMed  CAS  Google Scholar 

  19. Knafo S, Grossman Y, Barkai E, Benshalom G (2001) Increased spine density on piriform cortex pyramidal neurons after odor learning. Eur J Neurosci 13:633–638

    Article  PubMed  CAS  Google Scholar 

  20. Stackman RW, Hammond RS, Linardatos E, Gerlach A, Maylie J, Adelman JP, Tzounopoulos T (2002) Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. J Neurosci 22(23):10163–10171

    PubMed  CAS  Google Scholar 

  21. Storm JF (1989) An after-hyperpolarization of medium duration in rat hippocampal pyramidal cells. J Physiol 409:171–190

    PubMed  CAS  Google Scholar 

  22. Sah P (1996) Ca2+-activated K+ currents in neurons: types, physiological roles and modulation. Trends Neurosci 19(4):150–154

    Article  PubMed  CAS  Google Scholar 

  23. Gasparini S, DiFrancesco D (1999) Action of serotonin on the hyperpolarization-activated cation current (Ih) in rat CA1 hippocampal neurons. Eur J Neurosci 11:3093–3100

    Article  PubMed  CAS  Google Scholar 

  24. Stocker M, Krause M, Pedarzani P (1999) An apamin-sensitive Ca+-activated k+ current in hippocampal pyramidal neurons. Proc Natl Acad Sci U S A 96:4662–4667

    Article  PubMed  CAS  Google Scholar 

  25. Sanchez-Andres JV, Alkon DL (1991) Voltage-clamp analysis of the effects of classical conditioning on the hippocampus. J Neurophysiol 65:796–807

    PubMed  CAS  Google Scholar 

  26. Power JM, Wu WW, Sametsky E, Oh MM, Disterhoft JF (2002) Age-related enhancement of the slow outward calcium-activated potassium current in hippocampal CA1 pyramidal neurons in vitro. J Neurosci 22(16):7234–7243

    PubMed  CAS  Google Scholar 

  27. Sah P, Faber ES (2002) Channels underlying neuronal calcium-activated potassium currents. Prog Neurobiol 66(5):345–353

    Article  PubMed  CAS  Google Scholar 

  28. Sailer CA, Hu H, Kaufmann WA, Trieb M, Schwarzer C, Storm JF, Knaus HG (2002) Regional differences in distribution and functional expression of small-conductance Ca2+-activated K+ channels in rat brain. J Neurosci 22(22):9698–9707

    PubMed  CAS  Google Scholar 

  29. Brosh I, Rosenblum K, Barkai E (2006) Learning-induced reversal of the effect of noradrenalin on the postburst AHP. J Neurophysiol 96:1728–1733

    Article  PubMed  CAS  Google Scholar 

  30. Melyan Z, Wheal HV, Lancaster B (2002) Metabotropic-mediated kainate receptor regulation of IsAHP and excitability in pyramidal cells. Neuron 34(1):107–114

    Article  PubMed  CAS  Google Scholar 

  31. Melyan Z, Lancaster B, Wheal HV (2004) Metabotropic regulation of intrinsic excitability by synaptic activation of kainate receptors. J Neurosci 24(19):4530–4534

    Article  PubMed  CAS  Google Scholar 

  32. Seroussi Y, Brosh I, Barkai E (2002) Learning-induced reduction in post-burst after-hyperpolarization (AHP) is mediated by activation of PKC. Eur J Neurosci 16(5):965–969

    Article  PubMed  Google Scholar 

  33. Adams JP, Sweatt JD (2002) Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu Rev Pharmacol Toxicol 42:135–163

    Article  PubMed  CAS  Google Scholar 

  34. Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD (1998) The MAPK cascade is required for mammalian associative learning. Nat Neurosci 1:602–609

    Article  PubMed  CAS  Google Scholar 

  35. Schafe GE, Atkins CM, Swank MW, Bauer EP, Sweatt JD, LeDoux JE (2000) Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J Neurosci 20:8177–8187

    PubMed  CAS  Google Scholar 

  36. Berman DE, Hazvi S, Rosenblum K, Seger R, Dudai Y (1998) Specific and differential activation of mitogen-activated protein kinase cascades by unfamiliar taste in the insular cortex of the behaving rat. J Neurosci 18:10037–10044

    PubMed  CAS  Google Scholar 

  37. Blum S, Moore AN, Adams F, Dash PK (1999) A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. J Neurosci 19:3535–3544

    PubMed  CAS  Google Scholar 

  38. English JD, Sweatt JD (1996) Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J Biol Chem 271(40):24329–24332

    Article  PubMed  CAS  Google Scholar 

  39. English JD, Sweatt JD (1997) A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J Biol Chem 272(31):19103–19106

    Article  PubMed  CAS  Google Scholar 

  40. Rosenblum K, Futter M, Jones M, Hulme EC, Bliss TV (2000) ERKI/II regulation by the muscarinic acetylcholine receptors in neurons. J Neurosci 20:977–985

    PubMed  CAS  Google Scholar 

  41. Rosenblum K, Futter M, Voss K, Erent M, Skehel PA, French P, Obosi L, Jones MW, Bliss TV (2002) The role of extracellular regulated kinases I/II in late-phase long-term potentiation. J Neurosci 22:5432–5441

    PubMed  CAS  Google Scholar 

  42. Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5:173–183

    Article  PubMed  CAS  Google Scholar 

  43. Sheng M, Tsaur ML, Jan YN, Jan LY (1992) Subcellular segregation of two A-type K+ channel proteins in rat central neurons. Neuron 9:271–284

    Article  PubMed  CAS  Google Scholar 

  44. Yuan LL, Adams JP, Swank M, Sweatt JD, Johnston D (2002) Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway. J Neurosci 22:4860–4868

    PubMed  CAS  Google Scholar 

  45. Cohen-Matsliah S, Brosh I, Rosenblum K, Barkai E (2007) A novel role for ERK in maintaining long-term memory-relevant excitability changes. J Neurosci 27:12584–12589

    Article  PubMed  CAS  Google Scholar 

  46. Gervais R, Pager J (1983) Olfactory bulb excitability selectively modified in behaving rats after local 6-hydroxydopamine treatment. Behav Brain Res 9(2):165–179

    Article  PubMed  CAS  Google Scholar 

  47. Przybyslawski J, Roullet P, Sara SJ (1999) Attenuation of emotional and nonemotional memories after their reactivation: role of beta adrenergic receptors. J Neurosci 19(15):6623–6628

    PubMed  CAS  Google Scholar 

  48. Hasselmo ME, Linster C, Patil M, Ma D, Cekic M (1997) Noradrenergic suppression of synaptic transmission may influence cortical signal-to-noise ratio. J Neurophysiol 77(6):3326–3339

    PubMed  CAS  Google Scholar 

  49. Sullivan RM, Wilson DA (1991) Neural correlates of conditioned odor avoidance in infant rats. Behav Neurosci 105:307–312

    Article  PubMed  CAS  Google Scholar 

  50. Sullivan RM, Wilson DA (1993) Role of the amygdala complex in early olfactory associative learning. Behav Neurosci 107:254–263

    Article  PubMed  CAS  Google Scholar 

  51. Sullivan RM, Wilson DA (1994) The locus-coeruleus, norepinephrine and memory in newborns. Brain Res Bull 35:467–472

    Article  PubMed  CAS  Google Scholar 

  52. Foehring RC, Schwindt PC, Crill WE (1989) Norepinephrine selectively reduces slow Ca- and Na-mediated K currents in cat neocortical neurons. J Neurophysiol 61(2):245–256

    PubMed  CAS  Google Scholar 

  53. Barkai E, Bergman RE, Horwitz G, Hasselmo ME (1994) Modulation of associative memory function in a biophysical simulation of rat piriform cortex. J Neurophysiol 72(2):659–677

    PubMed  CAS  Google Scholar 

  54. Quinlan E, Lebel D, Brosh I, Barkai E (2004) A molecular mechanism for stabilization of learning-induced synaptic modifications. Neuron 41:185–192

    Article  PubMed  CAS  Google Scholar 

  55. Hasselmo ME, Barkai E (1995) Cholinergic modulation of activity-dependent synaptic plasticity in the piriform cortex. J Neurosci 15(10):6592–6604

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edi Barkai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saar, D., Barkai, E. Long-Lasting Maintenance of Learning-Induced Enhanced Neuronal Excitability: Mechanisms and Functional Significance. Mol Neurobiol 39, 171–177 (2009). https://doi.org/10.1007/s12035-009-8060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-009-8060-5

Keywords

Navigation