Skip to main content
Log in

Comparison of the Temporal Programs Regulating Tyrosine Hydroxylase and Enkephalin Expressions in TIDA Neurons of Lactating Rats Following Pup Removal and then Pup Return

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Dopamine (DA) and enkephalin (ENK) release from the tuberoinfundibular dopaminergic neurons (TIDA) into the hypophysial portal circulation is fundamentally different under non-lactating and lactating conditions. The aim of this experiment was to compare the effect of a brief interruption then resumption of suckling on the temporal program of tyrosine hydroxylase (TH; rate-limiting enzyme of dopamine synthesis) and ENK regulation in dams. On post partum day 10, pups were removed for a 4-h period from a group of the dams then returned for 4- and 24-h periods. It was examined whether such a brief interruption of suckling provokes full up-regulation of TH and down-regulation of ENK, and whether reinitiation of suckling limits the extent to which TH up- and ENK down-regulate. At the end of experiment, the animals were decapitated. In situ hybridization was used to examine the expression of TH and ENK mRNA in the arcuate nucleus where TIDA neurons reside. The results showed that, on one hand, the removal of pups induced TH up-regulation, on the other hand, ENK expression also increased 8 h after removal of pups and then started to slowly decline. In dams whose sucklings were reinitiated both TH and ENK mRNAs were up-regulated at least for a day. ENK expression responded more slowly to the removal of pups than expression of TH, and after reinitiation of suckling, the temporal program of regulation of both TH and ENK expressions ran parallel in the first 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ARC:

Arcuate nucleus

DA:

Dopamine

DEPC:

Diethylpyrocarbonate

ENK:

Enkephalin

KPBS:

Potassium phosphate buffer-saline

ME:

Median eminence

OD:

Optical density

PP:

Post Partum

PRL:

Prolactin

TH:

Tyrosine hydroxylase

TIDA:

Tuberoinfundibular dopaminergic

TRNA:

Torula yeast RNA

UTP:

Uracil triphosphate

References

  • Arbogast LA, Voogt JL (1998) Endogenous opioid peptides contribute to suckling-induced prolactin release by suppressing tyrosine hydroxylase activity and messenger ribonucleic acid levels in tuberoinfundibular dopaminergic neurons. Endocrinology 139:2857–2862

    Article  PubMed  CAS  Google Scholar 

  • Ben-Jonathan N, Oliver C, Weiner HJ, Mical RS, Porter JC (1977) Dopamine in hypophyseal portal plasma of the rat during estrous cycle and throughout pregnancy. Endocrinology 100:452–458

    Article  PubMed  CAS  Google Scholar 

  • Berghorn K, Bonnet J, Hoffman G (1994) cFos immunoreactivity is enhanced with biotin amplification. J Histochem Cytochem 42:1635–1642

    Article  PubMed  CAS  Google Scholar 

  • Berghorn KA, Duska B, Wang H, Le WW, Sherman T, Hoffman GE (1995) Cellular analysis of tyrosine hydroxylase expression during lactation. Soc Neurosci 21:1899

    Google Scholar 

  • Berghorn KA, Le WW, Sherman TG, Hoffman GE (2001) Suckling stimulus suppresses messenger RNA for tyrosine hydroxylase in arcuate neurons during lactation. J Comp Neurol 438:423–432

    Article  PubMed  CAS  Google Scholar 

  • Ciofi P, Crowley WR, Pillez A, Schmued LL, Tramu G, Mazzuca M (1993) Plasticity in expression of immunoreactivity for neuropeptide Y, enkephalins and neurotensin in the hypothalamic tubero-infundibular dopaminergic system during lactation in mice. J Neuroendocrinol 5:599–602

    Article  PubMed  CAS  Google Scholar 

  • Cristina C, Garcia-Tornadú I, Diaz-Torga G, Rubinstein M, Low MJ, Becú-Villalobos D (2006) Dopaminergic D2 receptor knockout mouse: an animal model of prolactinoma. Front Horm Res 35:50–63

    Article  PubMed  CAS  Google Scholar 

  • de Greef WJ, Plotsky PM, Neill JD (1981) Dopamine levels in hypophysial stalk plasma and prolactin levels in peripheral plasma of the lactating rat: effects of a simulated suckling stimulus. Neuroendocrinology 32:229–233

    Article  PubMed  Google Scholar 

  • Demarest KT, McKay DW, Riegle GD, Moore KE (1983) Biochemical indices of tuberoinfundibular dopaminergic neuronal activity during lactation: a lack of response to prolactin. Neuroendocrinology 36:130–137

    Article  PubMed  CAS  Google Scholar 

  • Enjalbert A, Ruberg M, Arancibia S, Priam M, Kordon C (1979) Endogenous opiate block dopamine inhibition of prolactin secretion in vitro. Nature 280:595–597

    Article  PubMed  CAS  Google Scholar 

  • Freeman ME, Kanyicska B, Lerant A, Nagy GM (2000) Prolactin: structure, function, and regulation of secretion. Physiol Rev 80:1523–1631

    PubMed  CAS  Google Scholar 

  • Grosvenor CE, Mena F, Whitworth NS (1979) The secretion rate of prolactin in the rat during suckling and its metabolic clearance rate after increasing intervals of nonsuckling. Endocrinology 104:372–376

    Article  PubMed  CAS  Google Scholar 

  • Hoffman GE, Le WW (2004) Just cool it! Cryoprotectant anti-freeze in immunocytochemistry and in situ hybridization. Peptides 25:425–431

    Article  PubMed  CAS  Google Scholar 

  • Hoffman G, Smith M, Fitzsimmons M (1992) Detecting steroidal effects on immediate early gene expression in the hypothalamus. NeuroProtocols 1:52–66

    Article  CAS  Google Scholar 

  • Iaccarino C, Samad TA, Mathis C, Kercret H, Picetti R, Borrelli E (2002) Control of lactotrope proliferation by dopamine: essential role of signaling through D2 receptors and ERKs. Proc Natl Acad Sci USA 99:14530–14535

    Article  PubMed  CAS  Google Scholar 

  • Kehoe L, Janik J, Callahan P (1992) Effects of immobilization stress on tuberoinfundibular dopaminergic (TIDA) neuronal activity and prolactin levels in lactating and non-lactating female rats. Life Sci 50:55–63

    Article  PubMed  CAS  Google Scholar 

  • Lee LR, Haisenleder DJ, Marshall JC, Smith MS (1989) The role of the suckling stimulus in regulating pituitary prolactin mRNA in the rat. Mol Cell Endocrinol 64:243–249

    Article  PubMed  CAS  Google Scholar 

  • Lee BJ, Kim JH, Lee CK, Kang HM, Kim HC, Kang SG (1995) Changes in mRNA levels of a pituitary-specific trans-acting factor, Pit-1, and prolactin during the rat estrous cycle. Eur J Endocrinol 132:771–776

    Article  PubMed  CAS  Google Scholar 

  • Mansour A, Meador-Woodruff JH, Bunzow JR, Civelli O, Akil H, Watson SJ (1990) Localization of dopamine D2 receptor mRNA and D1 and D2 receptor binding in the rat brain and pituitary: an in situ hybridization-receptor autoradiographic analysis. J Neurosci 10:2587–2600

    PubMed  CAS  Google Scholar 

  • Maurer JA, Wray S (1997) Neuronal dopamine subpopulations maintained in hypothalamic slice explant cultures exhibit distinct tyrosine hydroxylase mRNA turnover rates. J Neurosci 17:4552–4561

    PubMed  CAS  Google Scholar 

  • Mena F, Enjalbert A, Carbonell L, Priam M, Kordan C (1976) Effect of suckling on plasma prolactin and hypothalamic monoamine levels in the rat. Endocrinology 99:445–451

    Article  PubMed  CAS  Google Scholar 

  • Merchenthaler I (1993) Induction of enkephalin in tuberoinfundibular dopaminergic neurons during lactation. Endocrinology 133:2645–2651

    Article  PubMed  CAS  Google Scholar 

  • Merchenthaler I (1994) Induction of enkephalin in tuberoinfundibular dopaminergic neurons of pregnant, pseudopregnant, lactating and aged female rats. Neuroendocrinology 60:185–193

    Article  PubMed  CAS  Google Scholar 

  • Merchenthaler I, Lennard DE, Cianchetta P, Merchenthaler A, Bronstein D (1995) Induction of proenkephalin in tuberoinfundibular dopaminergic neurons by hyperprolactinemia: the role of sex steroids. Endocrinology 136:2442–2450

    Article  PubMed  CAS  Google Scholar 

  • Nagy GM, Halasz B (1983) Time course of the litter removal-induced depletion in plasma prolactin levels of lactating rats. An immediate full blockade of the hormone release after separation. Neuroendocrinology 37:459–462

    Article  PubMed  CAS  Google Scholar 

  • Nagy GM, Banky Z, Takacs L (1983) Rapid decrease of plasma prolactin levels in lactating rats separated from their pups. Endocrinol Exp 17:311–316

    PubMed  CAS  Google Scholar 

  • Nagy GM, Vecsernyés M, Julesz J, Barna I, Koenig JI (1994) Dehydration decreases plasma level of alpha-melanocyte-stimulating hormone (alpha-MSH) and attenuates suckling induced beta-endorphin but not ACTH response in lactating rats. Neuro Endocrinol Lett 16:275–284

    CAS  Google Scholar 

  • Neville MC, Morton J (2001) Physiology and endocrine changes underlying human lactogenesis II. J Nutr 131:3005 S–3008 S

    Google Scholar 

  • Oláh M, Fehér P, Ihm Z, Bácskay I, Kiss T, Freeman ME, Nagy GM, Vecsernyés M (2009) Dopamine-regulated adrenocorticotropic hormone secretion in lactating rats: functional plasticity of melanotropes. Neuroendocrinology 90:391–401

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Pena KS, Rosenfeld JA (2001) Evaluation and treatment of galactorrhea. Am Fam Physician 63:1763–1770

    PubMed  CAS  Google Scholar 

  • Plotsky PM, Neill JD (1982) The decrease in hypothalamic dopamine secretion induced by suckling: comparison of voltammetric and radioisotopic methods of measurement. Endocrinology 110:691–696

    Article  PubMed  CAS  Google Scholar 

  • Plotsky PM, De Greef WJ, Neill JD (1982) In situ voltammetric microelectrodes: application to the measurement of median eminence catecholamine release during simulated suckling. Brain Res 250:251–262

    Article  PubMed  CAS  Google Scholar 

  • Selmanoff M, Wise PM (1981) Decreased dopamine turnover in the median eminence in response to suckling in the lactating rat. Brain Res 212:101–115

    Article  PubMed  CAS  Google Scholar 

  • Wang HJ, Hoffman GE, Smith MS (1993) Suppressed tyrosine hydroxylase gene expression in the tuberoinfundibular dopaminergic system during lactation. Endocrinology 133:1657–1663

    Article  PubMed  CAS  Google Scholar 

  • Watson R, Wiegand S, Clough R, Hoffman GE (1986) Use of cryoprotectant to maintain long-term peptide immunoreactivity and tissue morphology. Peptides 7:155–159

    Article  PubMed  CAS  Google Scholar 

  • Whitworth NS, Grosvenor CE (1984) The effect of exteroceptive pup stimuli on the responsiveness of prolactin release mechanisms to suckling stimuli in the lactating rat. Endocrinology 115:1135–1140

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was funded by National Institutes of Health Grant NS 43788 to G.E.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria E. Hoffman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabó, F.K., Le, WW., Snyder, N.S. et al. Comparison of the Temporal Programs Regulating Tyrosine Hydroxylase and Enkephalin Expressions in TIDA Neurons of Lactating Rats Following Pup Removal and then Pup Return. J Mol Neurosci 45, 110–118 (2011). https://doi.org/10.1007/s12031-010-9466-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-010-9466-2

Keywords

Navigation