Skip to main content
Log in

Quality Changes and Shelf-Life Prediction of a Fresh Fruit and Vegetable Purple Smoothie

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

An Erratum to this article was published on 26 August 2017

This article has been updated

Abstract

The sensory, microbial, and bioactive quality changes of untreated (CTRL) and mild heat-treated (HT; 90 °C/45 s) smoothies were studied and modelled throughout storage (5, 15 and 25 °C). The overall acceptability was better preserved in HT samples being highly correlated (hierarchical clustering) with the flavour. The sensory quality data estimated smoothie shelf-life (CTRL/HT) of 18/55 (at 5 °C), 4.5/12 (at 15 °C) and 2.4/5.8 (at 25 °C) days. The yeast and mould growth rate was lower in HT compared to CTRL while a lag phase for mesophiles/psychrophiles was observed in HT-5/15 °C. HT and 5 °C storage stabilised the phenolic content. Ferric reducing antioxidant power reported the best correlation (R 2 = 0.94) with the studied bioactive compounds, followed by ABTS (R 2 = 0.81) while DPPH was the total antioxidant capacity method with the lowest adjustment (R 2 = 0.49). Conclusively, modelling was used to estimate the shelf-life of a smoothie based on quality retention after a short-time, high-temperature heat treatment that better preserved microbial and nutritional quality during storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 26 August 2017

    An erratum to this article has been published.

References

  • ASTM. (1986). Physical requirements guidelines for sensory evaluation laboratories (Vol. 913, ASTM Special Technical Pub. 913). Philadelphia: American Society for Testing Materials.

    Google Scholar 

  • Baranyi, J., & Roberts, T. A. (1994). A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23(3–4), 277–294. doi:10.1016/0168-1605 (94)90157-0.

    Article  CAS  Google Scholar 

  • Barnes, J. S., Nguyen, H. P., Shen, S., & Schug, K. A. (2009). General method for extraction of blueberry anthocyanins and identification using high performance liquid chromatography–electrospray ionization-ion trap-time of flight-mass spectrometry. Journal of Chromatography A, 1216(23), 4728–4735. doi:10.1016/j.chroma.2009.04.032.

    Article  CAS  Google Scholar 

  • Benzie, I. F., & Strain, J. J. (1999). Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 299, 15–27. doi:10.1016/S0076-6879(99)99005-5.

    Article  CAS  Google Scholar 

  • Boeing, H., Bechthold, A., Bub, A., Ellinger, S., Haller, D., Kroke, A., et al. (2012). Critical review: vegetables and fruit in the prevention of chronic diseases. European Journal of Nutrition, 51(6), 637–663. doi:10.1007/s00394-012-0380-y.

    Article  CAS  Google Scholar 

  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. doi:10.1016/S0023-6438(95)80008-5.

    Article  CAS  Google Scholar 

  • Cano, A., Hernández-Ruíz, J., García-Cánovas, F., Acosta, M., & Arnao, M. B. (1998). An end-point method for estimation of the total antioxidant activity in plant material. Phytochemical Analysis, 9(4), 196–202. doi:10.1002/(SICI)1099-1565(199807/08)9:4<196::AID-PCA395>3.0.CO;2-W.

    Article  CAS  Google Scholar 

  • Canuto, G. A. B., Oliveira, D. R., da Conceição, L. S. M., Farah, J. P. S., & Tavares, M. F. M. (2016). Development and validation of a liquid chromatography method for anthocyanins in strawberry (Fragaria spp.) and complementary studies on stability, kinetics and antioxidant power. Food Chemistry, 192, 566–574. doi:10.1016/j.foodchem.2015.06.095.

    Article  CAS  Google Scholar 

  • Castillejo, N., Martínez-Hernández, G. B., Gómez, P. A., Artés, F., & Artés-Hernández, F. (2016). Red fresh vegetables smoothies with extended shelf life as an innovative source of health-promoting compounds. Journal of Agricultural and Food Chemistry, 53(3), 1–12. doi:10.1007/s13197-015-2143-2.

    Google Scholar 

  • Castillejo, N., Martinez-Hernandez, G. B., Monaco, K., Gomez, P. A., Aguayo, E., Artes, F., et al. (2017). Preservation of bioactive compounds of a green vegetable smoothie using short time-high temperature mild thermal treatment. Food Science and Technology International, 23(1), 46–60. doi:10.1177/1082013216656240.

    Article  Google Scholar 

  • Conesa, R., Andreu, S., Fernandez, P. S., Esnoz, A., & Palop, A. (2009). Nonisothermal heat resistance determinations with the thermoresistometer Mastia. Journal of Applied Microbiology, 107(2), 506–513. doi:10.1111/j.1365-2672.2009.04236.x.

    Article  CAS  Google Scholar 

  • EC, R. (2007). Commission Regulation (EC) No 1441/2007. Official Journal of the European Union, 322, 12–29.

    Google Scholar 

  • Esteban, M. D., Conesa, R., Huertas, J. P., & Palop, A. (2015). Effect of thymol in heating and recovery media on the isothermal and non-isothermal heat resistance of Bacillus spores. Food Microbiology, 48, 35–40. doi:10.1016/j.fm.2014.11.016.

    Article  CAS  Google Scholar 

  • FAO/WHO. (2004). Vitamin and mineral requirements in human nutrition (2ed., Code of Federal Regulations). Bangkok: World Health Organization and Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Hall, J. N., Moore, S., Harper, S. B., & Lynch, J. W. (2009). Global variability in fruit and vegetable consumption. American Journal of Preventive Medicine, 36(5), 402–409. doi:10.1016/j.amepre.2009.01.029.

    Article  Google Scholar 

  • Hartigan, J. A. (1975). Clustering algorithms. New York: John Wiley & Sons.

    Google Scholar 

  • Hirotogu, A. (1998). Information theory and an extension of the maximum likelihood principle. In E. Parzen, K. Tanabe, & G. Kitagawa (Eds.), Selected papers of Hirotugu Akaike (pp. 199–213). New York: Springer.

    Google Scholar 

  • Houben, K., Jamsazzadeh Kermani, Z., Van Buggenhout, S., Van Loey, A. M., & Hendrickx, M. E. (2014). Thermal and high-pressure stability of pectin-converting enzymes in broccoli and carrot purée: towards the creation of specific endogenous enzyme populations through processing. Food and Bioprocess Technology, 7(6), 1713–1724. doi:10.1007/s11947-013-1166-9.

    Article  CAS  Google Scholar 

  • ISO (2007). Sensory analysis-general guidance for the design of test rooms. In ISO (Ed.), (Vol. 8589:2007). ISO.

  • Lo Scalzo, R., Iannoccari, T., Summa, C., Morelli, R., & Rapisarda, P. (2004). Effect of thermal treatments on antioxidant and antiradical activity of blood orange juice. Food Chemistry, 85(1), 41–47. doi:10.1016/j.foodchem.2003.05.005.

    Article  CAS  Google Scholar 

  • Martínez-Hernández, G. B., Gómez, P. A., Pradas, I., Artés, F., & Artés-Hernández, F. (2011). Moderate UV-C pretreatment as a quality enhancement tool in fresh-cut Bimi® broccoli. Postharvest Biology and Technology, 62(3), 327–337. doi:10.1016/j.postharvbio.2011.06.015.

    Article  Google Scholar 

  • McCullagh, P., & Nelder, J. A. (1989). Generalized linear models. London: Chapman and Hall.

    Book  Google Scholar 

  • Munyaka, A. W., Makule, E. E., Oey, I., Van Loey, A., & Hendrickx, M. (2010). Thermal stability of L-ascorbic acid and ascorbic acid oxidase in broccoli (Brassica oleracea var. italica). Journal of Food Science, 75(4), C336–C340. doi:10.1111/j.1750-3841.2010.01573.x.

    Article  CAS  Google Scholar 

  • Odriozola-Serrano, I., Soliva-Fortuny, R., & Martín-Belloso, O. (2008). Changes of health-related compounds throughout cold storage of tomato juice stabilized by thermal or high intensity pulsed electric field treatments. Innovative Food Science and Emerging Technologies, 9(3), 272–279. doi:10.1016/j.ifset.2007.07.009.

    Article  CAS  Google Scholar 

  • Patras, A., Brunton, N., Da Pieve, S., Butler, F., & Downey, G. (2009). Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purées. Innovative Food Science and Emerging Technologies, 10(1), 16–22. doi:10.1016/j.ifset.2008.09.008.

    Article  CAS  Google Scholar 

  • Picariello, G., Ferranti, P., Garro, G., Manganiello, G., Chianese, L., Coppola, R., et al. (2014). Profiling of anthocyanins for the taxonomic assessment of ancient purebred V. vinifera red grape varieties. Food Chemistry, 146, 15–22. doi:10.1016/j.foodchem.2013.08.140.

    Article  CAS  Google Scholar 

  • R_Core_Team. (2014). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Rodríguez-Verástegui, L. L., Martínez-Hernández, G. B., Castillejo, N., Gómez, P. A., Artés, F., & Artés-Hernández, F. (2015). Bioactive compounds and enzymatic activity of red vegetable smoothies during storage. Food and Bioprocess Technology, 9(1), 137–146. doi:10.1007/s11947-015-1609-6.

    Article  Google Scholar 

  • Shahidi, F. (2004). Phenolics in food and nutraceuticals. Boca Raton: CRC Press LLC.

    Google Scholar 

  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158.

    CAS  Google Scholar 

  • Souci, S. W., Fachmann, W., & Kraut, H. (2000). Food composition and nutrition tables. Stuttgart: Medpharm Scientific Publishers.

    Google Scholar 

  • Sun-Waterhouse, D., Bekkour, K., Wadhwa, S. S., & Waterhouse, G. I. N. (2014). Rheological and chemical characterization of smoothie beverages containing high concentrations of fibre and polyphenols from apple. Food and Bioprocess Technology, 7(2), 409–423. doi:10.1007/s11947-013-1091-y.

    Article  CAS  Google Scholar 

  • Tomás-Barberán, F. A., & Espín, J. C. (2001). Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science of Food and Agriculture, 81(9), 853–876. doi:10.1002/jsfa.885.

    Article  Google Scholar 

  • Wang, S., Lin, T., Man, G., Li, H., Zhao, L., Wu, J., et al. (2014). Effects of anti-browning combinations of ascorbic acid, citric acid, nitrogen and carbon dioxide on the quality of banana smoothies. Food and Bioprocess Technology, 7(1), 161–173. doi:10.1007/s11947-013-1107-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of this research was provided by the Ministerio Español de Economía y Competitividad MINECO (Projects AGL2013-48830-C2-1-R and AGL2013-48993-C2-1-R) and by FEDER funds. G.A. González-Tejedor thanks the Panamá Government for the scholarship to carry out his PhD Thesis. A. Garre (BES-2014-070946) is grateful to the MINECO for awarding him a pre-doctoral grant. We are also grateful to E. Esposito and N. Castillejo for their skilful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Artés-Hernández.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s11947-017-1984-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Tejedor, G.A., Martínez-Hernández, G.B., Garre, A. et al. Quality Changes and Shelf-Life Prediction of a Fresh Fruit and Vegetable Purple Smoothie. Food Bioprocess Technol 10, 1892–1904 (2017). https://doi.org/10.1007/s11947-017-1965-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1965-5

Keywords

Navigation