Skip to main content

Advertisement

Log in

Thermal and High-Pressure Stability of Pectin-Converting Enzymes in Broccoli and Carrot Purée: Towards the Creation of Specific Endogenous Enzyme Populations Through Processing

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The thermal and pressure stability of broccoli and carrot pectin-converting enzymes, in particular pectinmethylesterase (PME), β-galactosidase (β-Gal), and α-arabinofuranosidase (α-Af), were investigated in vegetable purée matrices. In situ enzyme inactivation by thermal and high-pressure processing (respectively 5 min at 25–80 °C at 0.1 MPa and 10 min at 0.1–800 MPa at 20 °C) was evaluated by measuring the residual enzyme activity in crude extracts of treated carrot, broccoli floret, and broccoli stem purée samples. PME was completely inactivated in all vegetable purée matrices after a 5-min treatment at 80 °C. After a treatment at 800 MPa (20 °C, 10 min) only 77–90 % of pressure stable PME was inactivated, depending on the matrix. β-Gal and α-Af enzymes were inactivated in the vegetable purée matrices by thermal treatments respectively at 67.5–72.5 and 80 °C. These enzymes showed some pressure resistance: treatments respectively at 600–700 and 600–750 MPa were necessary for one log-reduction of β-Gal and α-Af activity in the different purées at 20 °C. Under the assumption of a first-order inactivation model, inactivation rate constants and their temperature or pressure dependency were determined for the different enzymes. Based on differences in process stability of the enzymes in the individual purée matrices, the feasibility for the creation of specific endogenous enzyme populations by selective processing was evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alonso, J., Canet, W., Howell, N., & Alique, R. (2003). Purification and characterisation of carrot (Daucus carota L) pectinesterase. Journal of the Science of Food and Agriculture, 83(15), 1600–1606.

    Article  CAS  Google Scholar 

  • Anthon, G. E., & Barrett, D. M. (2002). Kinetic parameters for the thermal inactivation of quality-related enzymes in carrots and potatoes. Journal of Agricultural and Food Chemistry, 50(14), 4119–4125.

    Article  CAS  Google Scholar 

  • Balogh, T., Smout, C., Nguyen, B. L., Van Loey, A. M., & Hendrickx, M. E. (2004). Thermal and high-pressure inactivation kinetics of carrot pectinmethylesterase: from model system to real foods. Innovative Food Science & Emerging Technologies, 5(4), 429–436.

    Article  CAS  Google Scholar 

  • Christiaens, S., Van Buggenhout, S., Houben, K., Fraeye, I., Van Loey, A. M., & Hendrickx, M. E. (2011). Towards a better understanding of the pectin structure-function relationship in broccoli during processing: Part I—macroscopic and molecular analyses. Food Research International, 44(6), 1604–1612.

    Article  CAS  Google Scholar 

  • Crelier, S., Robert, M. C., Claude, J., & Juillerat, M. A. (2001). Tomato (Lycopersicon esculentum) pectin methylesterase and polygalacturonase behaviors regarding heat- and pressure-induced inactivation. Journal of Agricultural and Food Chemistry, 49(11), 5566–5575.

    Article  CAS  Google Scholar 

  • Downs, C. G., & Almira, E. C. (1995). A beta-galactosidase (GenBank X84684) cDNA homolog from broccoli (PGR95-017). Plant Physiology, 108, 1342–1342.

    Google Scholar 

  • Draper, N. R., & Smith, H. (1981). Applied regression analysis. New York: Wiley.

    Google Scholar 

  • Duvetter, T., Sila, D. N., Van Buggenhout, S., Jolie, R., Van Loey, A., & Hendrickx, M. (2009). Pectins in processed fruit and vegetables: Part I—stability and catalytic activity of pectinases. Comprehensive Reviews in Food Science and Food Safety, 8(2), 75–85.

    Article  CAS  Google Scholar 

  • Fachin, D., Van Loey, A. M., Ly Nguyen, B., Verlent, I., Indrawati, & Hendrickx, M. E. (2003). Inactivation kinetics of polygalacturonase in tomato juice. Innovative Food Science & Emerging Technologies, 4(2), 135–142.

    Article  CAS  Google Scholar 

  • Gross, K. C. (1982). A rapid and sensitive spectrophotometric method for assaying polygalacturonase using 2-cyanoacetamide. Hortscience, 17(6), 933–934.

    CAS  Google Scholar 

  • Houben, K., Jamsazzadeh Kermani, Z., Van Buggenhout, S., Jolie, R. P., Van Loey, A. M., & Hendrickx, M. E. (2012). Thermal and high-pressure stability of pectinmethylesterase, polygalacturonase, β-galactosidase and α-arabinofuranosidase in a tomato matrix: Towards the creation of specific endogenous enzyme populations through processing. Food and Bioprocess Technology. doi: 10.1007/s11947-012-0984-5 (in press).

  • Jolie, R. P., Duvetter, T., Houben, K., Clynen, E., Sila, D. N., Van Loey, A. M., & Hendrickx, M. E. (2009a). Carrot pectin methylesterase and its inhibitor from kiwi fruit: Study of activity, stability and inhibition. Innovative Food Science & Emerging Technologies, 10(4), 601–609.

    Article  CAS  Google Scholar 

  • Jolie, R. P., Duvetter, T., Verlinde, P. H. C. J., Van Buggenhout, S., Van Loey, A. M., & Hendrickx, M. E. (2009b). Size exclusion chromatography to gain insight into the complex formation of carrot pectin methylesterase and its inhibitor from kiwi fruit as influenced by thermal and high-pressure processing. Journal of Agricultural and Food Chemistry, 57(23), 11218–11225.

    Article  CAS  Google Scholar 

  • Jolie, R. P., Christiaens, S., De Roeck, A., Fraeye, I., Houben, K., Van Buggenhout, S., Van Loey, A. M., & Hendrickx, M. E. (2012). Pectin conversions under high pressure: Implications for the structure-related quality characteristics of plant-based foods. Trends in Food Science and Technology, 24(2), 103–118.

    Article  CAS  Google Scholar 

  • Konno, H., & Katoh, K. (1992). An extracellular β-galactosidase secreted from cell suspension cultures of carrot. Its purification and involvement in cell wall-polysaccharide hydrolysis. Physiologia Plantarum, 85(3), 507–514.

    Article  CAS  Google Scholar 

  • Konno, H., Yamasaki, Y., & Katoh, K. (1986). Characteristics of β-galactosidase purified from cell suspension cultures of carrot. Physiologia Plantarum, 68(1), 46–52.

    Article  CAS  Google Scholar 

  • Konno, H., Yamasaki, Y., & Katoh, K. (1987). Purification of an α-L-arabinofuranosidase from carrot cell cultures and its involvement in arabinose-rich polymer degradation. Physiologia Plantarum, 69(3), 405–412.

    Article  CAS  Google Scholar 

  • Konno, H., Katoh, K., & Kubota, I. (1988). Subunit structure and amino acid analyses of β-galactosidase purified from carrot cell cultures. Phytochemistry, 27(5), 1301–1302.

    Article  CAS  Google Scholar 

  • Konno, H., Tanaka, R., & Katoh, K. (1994). An extracellular α-L-arabinofuranosidase secreted from cell suspension cultures of carrot. Physiologia Plantarum, 91(3), 454–460.

    Article  CAS  Google Scholar 

  • Konno, H., Nakashima, S., Maitani, T., & Katoh, K. (1999). Alteration of pectic polysaccharides in cell walls, extracellular polysaccharides, and glycan-hydrolytic enzymes of growth-restricted carrot cells under calcium deficiency. Physiologia Plantarum, 107(3), 287–293.

    Article  CAS  Google Scholar 

  • Konno, H., Nakashima, S., Nakato, T., & Katoh, K. (2002a). Pectin-bound β-galactosidase present in cell walls of carrot cells under the different calcium status. Physiologia Plantarum, 114(2), 213–222.

    Article  CAS  Google Scholar 

  • Konno, H., Nakato, T., & Katoh, K. (2002b). Characteristics, hydrolysis of cell wall polymers, and response to calcium deficiency of a cell wall-associated β-galactosidase from carrot cells. Journal of Plant Physiology, 159(1), 1–8.

    Article  CAS  Google Scholar 

  • Ly-Nguyen, B., Van Loey, A. M., Fachin, D., Verlent, I., Indrawati, & Hendrickx, M. E. (2002). Partial purification, characterization, and thermal and high-pressure inactivation of pectin methylesterase from carrots (Daucus carrota L.). Journal of Agricultural and Food Chemistry, 50(19), 5437–5444.

    Article  Google Scholar 

  • Ly-Nguyen, B., Van Loey, A. M., Smout, C., Ozcan, S. E., Fachin, D., Verlent, I., Truong, S. V., Duvetter, T., & Hendrickx, M. E. (2003). Mild-heat and high-pressure inactivation of carrot pectin methylesterase: A kinetic study. Journal of Food Science, 68(4), 1377–1383.

    Article  CAS  Google Scholar 

  • Ngouémazong, D. E., Kabuye, G., Fraeye, I., Cardinaels, R., Van Loey, A., Moldenaers, P., & Hendrickx, M. (2012). Effect of debranching on the rheological properties of Ca2+-pectin gels. Food Hydrocolloids, 26(1), 44–53.

    Article  Google Scholar 

  • Ni, L., Lin, D., & Barrett, D. M. (2005). Pectin methylesterase catalyzed firming effects on low temperature blanched vegetables. Journal of Food Engineering, 70(4), 546–556.

    Article  Google Scholar 

  • Owino, W. O., Amubko, J. L., & Mathooko, F. M. (2005). Molecular basis of cell wall degradation during fruit ripening and senescence. Stewart Postharvest Review, 1(3), 1–10.

    Article  Google Scholar 

  • Pressey, R. (1983). β-galactosidases in ripening tomatoes. Plant Physiology, 71(1), 132–135.

    Article  CAS  Google Scholar 

  • Pressey, R. (1986). Extraction and assay of tomato polygalacturonases. Hortscience, 21(3), 490–492.

    CAS  Google Scholar 

  • Rastogi, N. K., Nguyen, L. T., Jiang, B., & Balasubramaniam, V. M. (2010). Improvement in texture of pressure-assisted thermally processed carrots by combined pretreatment using response surface methodology. Food and Bioprocess Technology, 3(5), 762–771.

    Article  Google Scholar 

  • Rico, D., Martin-Diana, A. B., Barry-Ryan, C., Henehan, G. T. M., & Frias, J. M. (2007). Simultaneous modelling of the thermal degradation kinetics of pectin methylesterase in lettuce (Lactuca sativa L.) and carrot (Daucus carota L.) extracts: Analysis of seasonal variation and tissue type. Bioscience, Biotechnology, and Biochemistry, 71(10), 2383–2392.

    Article  CAS  Google Scholar 

  • Sila, D. N., Smout, C., Satara, Y., Truong, V., Van Loey, A., & Hendrickx, M. (2007). Combined thermal and high pressure effect on carrot pectinmethylesterase stability and catalytic activity. Journal of Food Engineering, 78(3), 755–764.

    Article  CAS  Google Scholar 

  • Sila, D. N., Van Buggenhout, S., Duvetter, T., Fraeye, I., De Roeck, A., Van Loey, A., & Hendrickx, M. (2009). Pectins in processed fruit and vegetables: Part II—structure–function relationships. Comprehensive Reviews in Food Science and Food Safety, 8(2), 86–104.

    Article  CAS  Google Scholar 

  • Sozzi, G. O., Greve, L. C., Prody, G. A., & Labavitch, J. M. (2002). Gibberellic acid, synthetic auxins, and ethylene differentially modulate α-L-arabinofuranosidase activities in antisense 1-aminocyclopropane-1-carboxylic acid synthase tomato pericarp discs. Plant Physiology, 129(3), 1330–1340.

    Article  CAS  Google Scholar 

  • Stratilova, E., Markovic, O., Dzurova, M., Malovikova, A., Capek, P., & Omelkova, J. (1998). The pectolytic enzymes of carrots. Biologia, 53(6), 731–738.

    CAS  Google Scholar 

  • Tanaka, R., Ikeda, M., Funatsuki, K., Yukioka, H., Katoh, K., & Konno, H. (2001). Molecular cloning and in situ hybridization of α-L-arabinofuranosidase from carrot cells. Physiologia Plantarum, 113(3), 392–399.

    Article  CAS  Google Scholar 

  • Tateishi, A. (2008). β-galactosidase and α-L-arabinofuranosidase in cell wall modification related with fruit development and softening. Journal of the Japanese Society for Horticultural Science, 77(4), 329–340.

    Article  CAS  Google Scholar 

  • Tateishi, A., Kanayama, Y., & Yamaki, S. (1996). α-L-arabinofuranosidase from cell walls of Japanese pear fruits. Phytochemistry, 42(2), 295–299.

    Article  CAS  Google Scholar 

  • Tateishi, A., Mori, H., Watari, J., Nagashima, K., Yamaki, S., & Inoue, H. (2005). Isolation, characterization, and cloning of α-L-arabinofuranosidase expressed during fruit ripening of Japanese pear. Plant Physiology, 138(3), 1653–1664.

    Article  CAS  Google Scholar 

  • Tijskens, L. M. M., Waldron, K. W., Ng, A., Ingham, L., & Van Dijk, C. (1997). The kinetics of pectin methyl esterase in potatoes and carrots during blanching. Journal of Food Engineering, 34(4), 371–385.

    Article  Google Scholar 

  • Van Buggenhout, S., Sila, D. N., Duvetter, T., Van Loey, A., & Hendrickx, M. (2009). Pectins in processed fruits and vegetables: Part III—texture engineering. Comprehensive Reviews in Food Science and Food Safety, 8(2), 105–117.

    Article  Google Scholar 

  • Van Loey, A., Indrawati, Smout, C., & Hendrickx, M. (2003). Inactivation of enzymes. From experimental design to kinetic modeling. In J. R. Whitaker, A. G. J. Voragen, & D. W. S. Wong (Eds.), Handbook of food enzymology (pp. 49–58). New York: Marcel Dekker Inc.

    Google Scholar 

  • Verlent, I., Van Loey, A., Smout, C., Duvetter, T., & Hendrickx, M. E. (2004). Purified tomato polygalacturonase activity during thermal and high-pressure treatment. Biotechnology and Bioengineering, 86(1), 63–71.

    Article  CAS  Google Scholar 

  • Wu, A., & Chang, W. H. (1990). Influence of precooking on the firmness and pectic substances of 3 stem vegetables. International Journal of Food Science and Technology, 25(5), 558–565.

    Article  Google Scholar 

Download references

Acknowledgments

This research has been carried out with financial support from the Research Fund KU Leuven (KP/08/004) and from the Agency for Innovation by Science and Technology in Flanders (IWT-Vlaanderen). S. Van Buggenhout is a postdoctoral researcher, funded by the Research Foundation Flanders (FWO).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ken Houben or Marc E. Hendrickx.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houben, K., Jamsazzadeh Kermani, Z., Van Buggenhout, S. et al. Thermal and High-Pressure Stability of Pectin-Converting Enzymes in Broccoli and Carrot Purée: Towards the Creation of Specific Endogenous Enzyme Populations Through Processing. Food Bioprocess Technol 7, 1713–1724 (2014). https://doi.org/10.1007/s11947-013-1166-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1166-9

Keywords

Navigation