Skip to main content

Advertisement

Log in

Biomarkers in Neuroblastoma: An Insight into Their Potential Diagnostic and Prognostic Utilities

  • Neuroendocrine Cancers (M Cives, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion Statement

Neuroblastoma (NB) is a heterogeneous solid tumor of the pediatric population that originates from neural crest cells and affects the developing sympathetic nervous system. It is the most common neuroblastic tumor accounting for approximately 10% of all childhood cancers and 10–15% of pediatric tumor mortalities. The outcomes range from spontaneous tumor regression in low-risk groups to metastasis and death even after multimodal therapy in high-risk groups. Hence, the detection of NB at an early stage improves outcomes and provides a better prognosis for patients. Early detection and prognosis of NB depend on specific molecules termed biomarkers which can be tissue-specific or circulating. Certain biomarkers are employed in the classification of NB into different groups to improve the treatment and prognosis, and others can be used as therapeutic targets. Therefore, novel biomarker discovery is essential for the early detection of NB, predicting the course of the disease, and developing new targeted treatment strategies. In this review, we aim to summarize the literature pertinent to some important biomarkers of NB and discuss the prognostic role of these biomarkers as well as their potential role in targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Matthay KK, et al. Neuroblastoma. Nat Rev Dis Primers. 2016;2:16078.

    Article  PubMed  Google Scholar 

  2. Jiang P, et al. FUBP1 promotes neuroblastoma proliferation via enhancing glycolysis-a new possible marker of malignancy for neuroblastoma. J Exp Clin Cancer Res. 2019;38(1):400.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Park JR, Eggert A, Caron H. Neuroblastoma: biology, prognosis, and treatment. Hematol Oncol Clin North Am. 2010;24(1):65–86.

    Article  PubMed  Google Scholar 

  4. Wang Y, et al. Bioinformatic Identification of neuroblastoma microenvironment-associated biomarkers with prognostic value. J Oncol. 2020;2020:5943014.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Parikh NS, et al. SIOP-PODC adapted risk stratification and treatment guidelines: recommendations for neuroblastoma in low- and middle-income settings. Pediatr Blood Cancer. 2015;62(8):1305–16.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dobrotkova V, et al. Prediction of neuroblastoma cell response to treatment with natural or synthetic retinoids using selected protein biomarkers. PLoS ONE. 2019;14(6):e0218269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Irwin MS, Park JR. Neuroblastoma: paradigm for precision medicine. Pediatr Clin North Am. 2015;62(1):225–56.

    Article  PubMed  Google Scholar 

  8. DuBois SG, et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol. 1999;21(3):181–9.

    Article  CAS  PubMed  Google Scholar 

  9. van Limpt V, et al. The Phox2B homeobox gene is mutated in sporadic neuroblastomas. Oncogene. 2004;23(57):9280–8.

    Article  PubMed  CAS  Google Scholar 

  10. Sung KW, et al. Neuroblastoma originating from extra-abdominal sites: association with favorable clinical and biological features. J Korean Med Sci. 2009;24(3):461–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vo KT, et al. Clinical, biologic, and prognostic differences on the basis of primary tumor site in neuroblastoma: a report from the international neuroblastoma risk group project. J Clin Oncol. 2014;32(28):3169–76.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Joshi VV, et al. Recommendations for modification of terminology of neuroblastic tumors and prognostic significance of Shimada classification. A clinicopathologic study of 213 cases from the Pediatric Oncology Group. Cancer. 1992;69(8):2183–96.

    Article  CAS  PubMed  Google Scholar 

  13. Peuchmaur M, et al. Revision of the International Neuroblastoma Pathology Classification: confirmation of favorable and unfavorable prognostic subsets in ganglioneuroblastoma, nodular. Cancer. 2003;98(10):2274–81.

    Article  PubMed  Google Scholar 

  14. Bilke S, et al. Whole chromosome alterations predict survival in high-risk neuroblastoma without MYCN amplification. Clin Cancer Res. 2008;14(17):5540–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Roy N, et al. Combined M-FISH and CGH analysis allows comprehensive description of genetic alterations in neuroblastoma cell lines. Genes Chromosomes Cancer. 2001;32(2):126–35.

    Article  PubMed  Google Scholar 

  16. Brodeur GM, Sekhon G, Goldstein MN. Chromosomal aberrations in human neuroblastomas. Cancer. 1977;40(5):2256–63.

    Article  CAS  PubMed  Google Scholar 

  17. Caron H, et al. Allelic loss of the short arm of chromosome 4 in neuroblastoma suggests a novel tumour suppressor gene locus. Hum Genet. 1996;97(6):834–7.

    Article  CAS  PubMed  Google Scholar 

  18. Brodeur GM, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11(8):1466–77.

    Article  CAS  PubMed  Google Scholar 

  19. Monclair T, et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol. 2009;27(2):298–303.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hidalgo MR, et al. Models of cell signaling uncover molecular mechanisms of high-risk neuroblastoma and predict disease outcome. Biol Direct. 2018;13(1):16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sokol E, Desai AV. The evolution of risk classification for neuroblastoma. Children (Basel). 2019;6(2):25–98.

    Google Scholar 

  22. Robb MA, McInnes PM, Califf RM. Biomarkers and surrogate endpoints: developing common terminology and definitions. JAMA. 2016;315(11):1107–8.

    Article  CAS  PubMed  Google Scholar 

  23. Sanjay ST, et al. Biomarker detection for disease diagnosis using cost-effective microfluidic platforms. Analyst. 2015;140(21):7062–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yáñez Y, et al. Two independent epigenetic biomarkers predict survival in neuroblastoma. Clin Epigenetics. 2015;7(1):16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Utnes P, et al. Clinically relevant biomarker discovery in high-risk recurrent neuroblastoma. Cancer Inform. 2019;18:1176935119832910. Reason: Comprehensive study using next-generation sequencing technology to determine the expression profiles in high-risk neuroblastoma cell lines established before and after therapy. Authors reiterated the advantage of analyzing biomarkers in a clinically relevant neuroblastoma model system to assess the effect of individual genes upon gene perturbation. This study identified several genes which may aid in the prediction of response to therapy and tumor recurrence in neuroblastoma.

  26. Knoepfler PS, Cheng PF, Eisenman RN. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev. 2002;16(20):2699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hackett CS, et al. Genome-wide array CGH analysis of murine neuroblastoma reveals distinct genomic aberrations which parallel those in human tumors. Cancer Res. 2003;63(17):5266–73.

    CAS  PubMed  Google Scholar 

  28. Kohl NE, et al. Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell. 1983;35(2 Pt 1):359–67.

    Article  CAS  PubMed  Google Scholar 

  29. Shimada H, et al. Identification of subsets of neuroblastomas by combined histopathologic and N-myc analysis. J Natl Cancer Inst. 1995;87(19):1470–6.

    Article  CAS  PubMed  Google Scholar 

  30. Wang T, et al. MYCN drives glutaminolysis in neuroblastoma and confers sensitivity to an ROS augmenting agent. Cell Death Dis. 2018;9(2):220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Powers JT, et al. Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma. Nature. 2016;535(7611):246–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tsubota S, Kadomatsu K. Origin and initiation mechanisms of neuroblastoma. Cell Tissue Res. 2018;372(2):211–21.

    Article  CAS  PubMed  Google Scholar 

  33. Berry T, et al. The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in neuroblastoma. Cancer Cell. 2012;22(1):117–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schönherr C, et al. Anaplastic lymphoma kinase (ALK) regulates initiation of transcription of MYCN in neuroblastoma cells. Oncogene. 2012;31(50):5193–200.

    Article  PubMed  CAS  Google Scholar 

  35. Wenzel A, et al. The N-Myc oncoprotein is associated in vivo with the phosphoprotein Max(p20/22) in human neuroblastoma cells. EMBO J. 1991;10(12):3703–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ferrucci F, et al. MAX to MYCN intracellular ratio drives the aggressive phenotype and clinical outcome of high risk neuroblastoma. Biochim Biophys Acta Gene Regul Mech. 2018;1861(3):235–45.

    Article  CAS  PubMed  Google Scholar 

  37. Corvetta D, et al. Physical interaction between MYCN oncogene and polycomb repressive complex 2 (PRC2) in neuroblastoma: functional and therapeutic implications. J Biol Chem. 2013;288(12):8332–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Agarwal S, et al. MYCN acts as a direct co-regulator of p53 in MYCN amplified neuroblastoma. Oncotarget. 2018;9(29):20323–38.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lee JW, et al. Clinical significance of MYCN amplification in patients with high-risk neuroblastoma. Pediatr Blood Cancer. 2018;65(10):e27257.

    Article  PubMed  CAS  Google Scholar 

  40. Moreno L, et al. A nomogram of clinical and biologic factors to predict survival in children newly diagnosed with high-risk neuroblastoma: an International Neuroblastoma Risk Group project. Pediatr Blood Cancer. 2020;68(3):e28794.

    PubMed  Google Scholar 

  41. Mossé YP, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455(7215):930–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Carén H, et al. High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours. Biochem J. 2008;416(2):153–9.

    Article  PubMed  CAS  Google Scholar 

  43. Bresler SC, et al. ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer Cell. 2014;26(5):682–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Osajima-Hakomori Y, et al. Biological role of anaplastic lymphoma kinase in neuroblastoma. Am J Pathol. 2005;167(1):213–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miyake I, et al. Activation of anaplastic lymphoma kinase is responsible for hyperphosphorylation of ShcC in neuroblastoma cell lines. Oncogene. 2002;21(38):5823–34.

    Article  CAS  PubMed  Google Scholar 

  46. George RE, et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature. 2008;455(7215):975–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shang X, et al. Aurora A is a negative prognostic factor and a new therapeutic target in human neuroblastoma. Mol Cancer Ther. 2009;8(8):2461–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Romain C, et al. Targeting Aurora kinase-A downregulates cell proliferation and angiogenesis in neuroblastoma. J Pediatr Surg. 2014;49(1):159–65.

    Article  PubMed  Google Scholar 

  49. Cheung NK, et al. Association of age at diagnosis and genetic mutations in patients with neuroblastoma. JAMA. 2012;307(10):1062–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pugh TJ, et al. The genetic landscape of high-risk neuroblastoma. Nat Genet. 2013;45(3):279–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. White PS, et al. Definition and characterization of a region of 1p36.3 consistently deleted in neuroblastoma. Oncogene. 2005;24(16):2684–94.

    Article  CAS  PubMed  Google Scholar 

  52. Garcia I, et al. Expression of the neuron-specific protein CHD5 is an independent marker of outcome in neuroblastoma. Mol Cancer. 2010;9:277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Koyama H, et al. Mechanisms of CHD5 Inactivation in neuroblastomas. Clin Cancer Res. 2012;18(6):1588–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Caron H, et al. Allelic loss of chromosome 1p as a predictor of unfavorable outcome in patients with neuroblastoma. N Engl J Med. 1996;334(4):225–30.

    Article  CAS  PubMed  Google Scholar 

  55. Carén H, et al. High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset. Proc Natl Acad Sci USA. 2010;107(9):4323–8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Attiyeh EF, et al. Chromosome 1p and 11q deletions and outcome in neuroblastoma. N Engl J Med. 2005;353(21):2243–53.

    Article  CAS  PubMed  Google Scholar 

  57. Spitz R, et al. Loss in chromosome 11q identifies tumors with increased risk for metastatic relapses in localized and 4S neuroblastoma. Clin Cancer Res. 2006;12(11 Pt 1):3368–73.

    Article  CAS  PubMed  Google Scholar 

  58. Juan Ribelles A, et al. Clinical features of neuroblastoma with 11q deletion: an increase in relapse probabilities in localized and 4S stages. Sci Rep. 2019;9(1):13806.

    Article  PubMed  CAS  Google Scholar 

  59. Cao Y, et al. Research progress of neuroblastoma related gene variations. Oncotarget. 2017;8(11):18444–55.

    Article  PubMed  Google Scholar 

  60. Michels E, et al. CADM1 is a strong neuroblastoma candidate gene that maps within a 3.72 Mb critical region of loss on 11q23. BMC Cancer. 2008;8:173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ando K, et al. Expression of TSLC1, a candidate tumor suppressor gene mapped to chromosome 11q23, is downregulated in unfavorable neuroblastoma without promoter hypermethylation. Int J Cancer. 2008;123(9):2087–94.

    Article  CAS  PubMed  Google Scholar 

  62. Janoueix-Lerosey I, et al. Overall genomic pattern is a predictor of outcome in neuroblastoma. J Clin Oncol. 2009;27(7):1026–33.

    Article  PubMed  Google Scholar 

  63. Abel F, et al. Gain of chromosome arm 17q is associated with unfavourable prognosis in neuroblastoma, but does not involve mutations in the somatostatin receptor 2(SSTR2) gene at 17q24. Br J Cancer. 1999;81(8):1402–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bown N, et al. Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N Engl J Med. 1999;340(25):1954–61.

    Article  CAS  PubMed  Google Scholar 

  65. Plantaz D, et al. Gain of chromosome 17 is the most frequent abnormality detected in neuroblastoma by comparative genomic hybridization. Am J Pathol. 1997;150(1):81–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Islam A, et al. High expression of Survivin, mapped to 17q25, is significantly associated with poor prognostic factors and promotes cell survival in human neuroblastoma. Oncogene. 2000;19(5):617–23.

    Article  CAS  PubMed  Google Scholar 

  67. Hayashi Y, et al. Cytogenetic findings and prognosis in neuroblastoma with emphasis on marker chromosome 1. Cancer. 1989;63(1):126–32.

    Article  CAS  PubMed  Google Scholar 

  68. Kaneko Y, et al. Different karyotypic patterns in early and advanced stage neuroblastomas. Cancer Res. 1987;47(1):311–8.

    CAS  PubMed  Google Scholar 

  69. Melaiu O, et al. PD-L1 is a therapeutic target of the bromodomain inhibitor JQ1 and combined with HLA Class I, a promising prognostic biomarker in neuroblastoma. Clin Cancer Res. 2017;23(15):4462–72.

    Article  CAS  PubMed  Google Scholar 

  70. Brunen D, et al. PIM kinases are a potential prognostic biomarker and therapeutic target in neuroblastoma. Mol Cancer Ther. 2018;17(4):849–57.

    Article  CAS  PubMed  Google Scholar 

  71. Trigg RM, et al. The targetable kinase PIM1 drives ALK inhibitor resistance in high-risk neuroblastoma independent of MYCN status. Nat Commun. 2019;10(1):5428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pieraccioli M, et al. ZNF281 inhibits neuronal differentiation and is a prognostic marker for neuroblastoma. Proc Natl Acad Sci USA. 2018;115(28):7356–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gu Y, et al. The deubiquitinating enzyme UCHL1 is a favorable prognostic marker in neuroblastoma as it promotes neuronal differentiation. J Exp Clin Cancer Res. 2018;37(1):258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yu J, et al. Epigenetic identification of ubiquitin carboxyl-terminal hydrolase L1 as a functional tumor suppressor and biomarker for hepatocellular carcinoma and other digestive tumors. Hepatology. 2008;48(2):508–18.

    Article  CAS  PubMed  Google Scholar 

  75. Bettinsoli P, et al. Favorable prognostic role of tropomodulins in neuroblastoma. Oncotarget. 2018;9(43):27092–103.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Duncan R, et al. A sequence-specific, single-strand binding protein activates the far upstream element of c-myc and defines a new DNA-binding motif. Genes Dev. 1994;8(4):465–80.

    Article  CAS  PubMed  Google Scholar 

  77. Wu PY, et al. Aryl hydrocarbon receptor downregulates MYCN expression and promotes cell differentiation of neuroblastoma. PLoS ONE. 2014;9(2):e88795.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Wu PY, et al. Activation of aryl hydrocarbon receptor by kynurenine impairs progression and metastasis of neuroblastoma. Cancer Res. 2019;79(21):5550–62.

    Article  CAS  PubMed  Google Scholar 

  79. Lee HY, et al. Instructive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells. Science. 2004;303(5660):1020–3.

    Article  CAS  PubMed  Google Scholar 

  80. El-Shazly SS, et al. The role of β-catenin and paired-like homeobox 2B (PHOX2B) expression in neuroblastoma patients; predictive and prognostic value. Exp Mol Pathol. 2019;110:104272.

    Article  CAS  PubMed  Google Scholar 

  81. Pattyn A, et al. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature. 1999;399(6734):366–70.

    Article  CAS  PubMed  Google Scholar 

  82. Bourdeaut F, et al. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Cancer Lett. 2005;228(1–2):51–8.

    Article  CAS  PubMed  Google Scholar 

  83. Xie Y, et al. A 3-protein expression signature of neuroblastoma for outcome prediction. Am J Surg Pathol. 2018;42(8):1027–35.

    Article  PubMed  Google Scholar 

  84. Keim DR, et al. PCNA levels in neuroblastoma are increased in tumors with an amplified N-myc gene and in metastatic stage tumors. Clin Exp Metastasis. 1993;11(1):83–90.

    Article  CAS  PubMed  Google Scholar 

  85. Nakagawara A, et al. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med. 1993;328(12):847–54.

    Article  CAS  PubMed  Google Scholar 

  86. Schulte JH, et al. Microarray analysis reveals differential gene expression patterns and regulation of single target genes contributing to the opposing phenotype of TrkA- and TrkB-expressing neuroblastomas. Oncogene. 2005;24(1):165–77.

    Article  CAS  PubMed  Google Scholar 

  87. Yamashiro DJ, et al. Expression and function of Trk-C in favourable human neuroblastomas. Eur J Cancer. 1997;33(12):2054–7.

    Article  CAS  PubMed  Google Scholar 

  88. Wu ZL, et al. Expression of GD2 ganglioside by untreated primary human neuroblastomas. Cancer Res. 1986;46(1):440–3.

    CAS  PubMed  Google Scholar 

  89. Cheresh DA, et al. Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins. J Cell Biol. 1986;102(3):688–96.

    Article  CAS  PubMed  Google Scholar 

  90. Balis FM, et al. The ganglioside G(D2) as a circulating tumor biomarker for neuroblastoma. Pediatr Blood Cancer. 2020;67(1):e28031–e28031.

    Article  CAS  PubMed  Google Scholar 

  91. Terzic T, et al. Expression of disialoganglioside (GD2) in neuroblastic tumors: a prognostic value for patients treated with anti-GD2 immunotherapy. Pediatr Dev Pathol. 2018;21(4):355–62.

    Article  PubMed  Google Scholar 

  92. Ladisch S, et al. Shedding of GD2 ganglioside by human neuroblastoma. Int J Cancer. 1987;39(1):73–6.

    Article  CAS  PubMed  Google Scholar 

  93. Hogarty MD, et al. ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma. Cancer Res. 2008;68(23):9735–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Geerts D, et al. The polyamine metabolism genes ornithine decarboxylase and antizyme 2 predict aggressive behavior in neuroblastomas with and without MYCN amplification. Int J Cancer. 2010;126(9):2012–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Rounbehler RJ, et al. Targeting ornithine decarboxylase impairs development of MYCN-amplified neuroblastoma. Cancer Res. 2009;69(2):547–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pajtler KW, et al. The GSK461364 PLK1 inhibitor exhibits strong antitumoral activity in preclinical neuroblastoma models. Oncotarget. 2017;8(4):6730–41.

    Article  PubMed  Google Scholar 

  97. Ackermann S, et al. Polo-like kinase 1 is a therapeutic target in high-risk neuroblastoma. Clin Cancer Res. 2011;17(4):731–41.

    Article  CAS  PubMed  Google Scholar 

  98. Ramani P, et al. High levels of polo-like kinase 1 and phosphorylated translationally controlled tumor protein indicate poor prognosis in neuroblastomas. J Neurooncol. 2015;125(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  99. Rizk M, et al., Deciphering the roles of glycogen synthase kinase 3 (GSK3) in the treatment of autism spectrum disorder and related syndromes. Mol Biol Rep. 2021.

  100. Bou-Gharios J, et al. The potential use of tideglusib as an adjuvant radio-therapeutic treatment for glioblastoma multiforme cancer stem-like cells. Pharmacol Rep. 2021;73(1):227–39.

    Article  CAS  PubMed  Google Scholar 

  101. Bahmad HF, et al. Tideglusib attenuates growth of neuroblastoma cancer stem/progenitor cells in vitro and in vivo by specifically targeting GSK-3β. Pharmacol Rep. 2021;73(1):211–26. Reason: Basic research study evaluating the potential anti-tumor effect of tideglusib (TDG), an irreversible GSK-3β inhibitor drug, on three human neuroblastoma cell lines, SK-N-SH, SH-SY5Y, and IMR-32, concluding that TDG could serve as an effective treatment capable of targeting the neuroblastoma cancer stem cells and hence overcoming therapy resistance.

  102. Liu X, et al. Circulating tumor cells detection in neuroblastoma patients by EpCAM-independent enrichment and immunostaining-fluorescence in situ hybridization. EBioMedicine. 2018;35:244–50.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Moss TJ, Sanders DG. Detection of neuroblastoma cells in blood. J Clin Oncol. 1990;8(4):736–40.

    Article  CAS  PubMed  Google Scholar 

  104. Kuroda T, et al. Prognostic significance of circulating tumor cells and bone marrow micrometastasis in advanced neuroblastoma. J Pediatr Surg. 2008;43(12):2182–5.

    Article  PubMed  Google Scholar 

  105. Leon SA, et al. Free DNA in the serum of cancer patients and the effect of therapy. Can Res. 1977;37(3):646.

    CAS  Google Scholar 

  106. Combaret V, et al. Determination of 17q gain in patients with neuroblastoma by analysis of circulating DNA. Pediatr Blood Cancer. 2011;56(5):1545–5017.

    Article  Google Scholar 

  107. Yagyu S, et al. Preoperative analysis of 11q loss using circulating tumor-released DNA in serum: A novel diagnostic tool for therapy stratification of neuroblastoma. Cancer Lett. 2011;309(2):185–9.

    Article  CAS  PubMed  Google Scholar 

  108. Träger C, et al. Quantitative analysis of tyrosine hydroxylase mRNA for sensitive detection of neuroblastoma cells in blood and bone marrow. Clin Chem. 2003;49(1):104–12.

    Article  PubMed  Google Scholar 

  109. Marachelian A, et al. Expression of five neuroblastoma genes in bone marrow or blood of patients with relapsed/refractory neuroblastoma provides a new biomarker for disease and prognosis. Clin Cancer Res. 2017;23(18):5374.

    Article  CAS  PubMed  Google Scholar 

  110. Murray MJ, et al. Solid tumors of childhood display specific serum microRNA profiles. Cancer Epidemiol Biomark Prev. 2015;24(2):350–60.

    Article  CAS  Google Scholar 

  111. Ramraj SK, et al. Serum-circulating miRNAs predict neuroblastoma progression in mouse model of high-risk metastatic disease. Oncotarget. 2016;7(14):18605–19.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zeka F, et al. Circulating microRNA biomarkers for metastatic disease in neuroblastoma patients. JCI Insight. 2018;3(23):299.

    Article  Google Scholar 

  113. Hashimoto K, et al. Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proc Natl Acad Sci. 2018;115(9):2204–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Haug BH, et al. Exosome-like extracellular vesicles from MYCN-amplified neuroblastoma cells contain oncogenic miRNAs. Anticancer Res. 2015;35(5):2521–30.

    CAS  PubMed  Google Scholar 

  115. Challagundla KB, et al. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. JNCI. 2015;107(7):456.

    Article  CAS  Google Scholar 

  116. Liu R, et al. Overall survival of cancer patients with serum lactate dehydrogenase greater than 1000 IU/L. Tumor Biol. 2016;37(10):14083–8.

    Article  CAS  Google Scholar 

  117. Morgenstern DA, et al. Prognostic significance of pattern and burden of metastatic disease in patients with stage 4 neuroblastoma: a study from the International Neuroblastoma Risk Group database. Eur J Cancer. 2016;65:1–10.

    Article  PubMed  Google Scholar 

  118. Cangemi G, et al. Prognostic value of ferritin, neuron-specific enolase, lactate dehydrogenase, and urinary and plasmatic catecholamine metabolites in children with neuroblastoma. Onco Targets Ther. 2012;5:417–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Bond JV. Clinical significance of catecholamine excretion levels in diagnosis and treatment of neuroblastoma. Arch Dis Child. 1975;50(9):691–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Eisenhofer G, Kopin IJ, Goldstein DS. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev. 2004;56(3):331.

    Article  CAS  PubMed  Google Scholar 

  121. Berthold F, et al. Serum vanillylmandelic acid/homovanillic acid contributes to prognosis estimation in patients with localised but not with metastatic neuroblastoma. Eur J Cancer. 1992;28(12):1950–4.

    Article  Google Scholar 

  122. LaBrosse EH, et al. Urinary excretion of 3-methoxy-4-hydroxymandelic acid and 3-methoxy-4-hydroxyphenylacetic acid by 288 patients with neuroblastoma and related neural crest tumors. Can Res. 1980;40(6):1995.

    CAS  Google Scholar 

  123. Strenger V, et al. Diagnostic and prognostic impact of urinary catecholamines in neuroblastoma patients. Pediatr Blood Cancer. 2007;48(5):504–9.

    Article  PubMed  Google Scholar 

  124. Verly IRN, et al. Catecholamines profiles at diagnosis: increased diagnostic sensitivity and correlation with biological and clinical features in neuroblastoma patients. Eur J Cancer. 2017;72:235–43.

    Article  CAS  PubMed  Google Scholar 

  125. Hann H-WL, Levy HM, Evans AE. Serum ferritin as a guide to therapy in neuroblastoma. Can Res. 1980;40(5):1411.

    CAS  Google Scholar 

  126. Tsuchida Y, et al. Serial determination of serum neuron-specific enolase in patients with neuroblastoma and other pediatric tumors. J Pediatr Surg. 1987;22(5):419–24.

    Article  CAS  PubMed  Google Scholar 

  127. Massaron S, et al. Neuron-specific enolase evaluation in patients with neuroblastoma. Tumor Biol. 1998;19(4):261–8.

    Article  CAS  Google Scholar 

  128. Zeltzer P, et al. Raised neuron-specific enolase in serum of children with metastatic neuroblastoma: a report from the Children’s Cancer Study Group. The Lancet. 1983;322(8346):361–3.

    Article  Google Scholar 

  129. Mossé YP, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14(6):472–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. DuBois SG, et al. Phase I study of the Aurora A kinase inhibitor alisertib in combination with irinotecan and temozolomide for patients with relapsed or refractory neuroblastoma: a NANT (New Approaches to Neuroblastoma Therapy) Trial. J Clin Oncol. 2016;34(12):1368–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mossé YP, et al. Pediatric phase I trial and pharmacokinetic study of MLN8237, an investigational oral selective small-molecule inhibitor of Aurora kinase A: a Children’s Oncology Group Phase I Consortium study. Clin Cancer Res. 2012;18(21):6058–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Tarek N, et al. Unlicensed NK cells target neuroblastoma following anti-GD2 antibody treatment. J Clin Invest. 2012;122(9):3260–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cheung NK, et al. Humanizing murine IgG3 anti-GD2 antibody m3F8 substantially improves antibody-dependent cell-mediated cytotoxicity while retaining targeting in vivo. Oncoimmunology. 2012;1(4):477–86.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Cheung NK, et al. Anti-G(D2) antibody treatment of minimal residual stage 4 neuroblastoma diagnosed at more than 1 year of age. J Clin Oncol. 1998;16(9):3053–60.

    Article  CAS  PubMed  Google Scholar 

  135. Simon T, et al. Long term outcome of high-risk neuroblastoma patients after immunotherapy with antibody ch14.18 or oral metronomic chemotherapy. BMC Cancer. 2011;11:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yu AL, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med. 2010;363(14):1324–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cheung NK, et al. Key role for myeloid cells: phase II results of anti-G(D2) antibody 3F8 plus granulocyte-macrophage colony-stimulating factor for chemoresistant osteomedullary neuroblastoma. Int J Cancer. 2014;135(9):2199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cheung NK, et al. Ganglioside GD2 specific monoclonal antibody 3F8: a phase I study in patients with neuroblastoma and malignant melanoma. J Clin Oncol. 1987;5(9):1430–40.

    Article  CAS  PubMed  Google Scholar 

  139. Ladenstein R, et al. Ch1418 antibody produced in CHO cells in relapsed or refractory Stage 4 neuroblastoma patients: a SIOPEN Phase 1 study. MAbs. 2013;5(5):801–9.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Lewis EC, et al. A subset analysis of a phase II trial evaluating the use of DFMO as maintenance therapy for high-risk neuroblastoma. Int J Cancer. 2020;147(11):3152–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sholler GLS, et al. Maintenance DFMO increases survival in high risk neuroblastoma. Sci Rep. 2018;8(1):14445.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Yue Z-X, et al. MYCN amplification predicts poor prognosis based on interphase fluorescence in situ hybridization analysis of bone marrow cells in bone marrow metastases of neuroblastoma. Cancer Cell Int. 2017;17(1):43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Schneiderman J, et al. Clinical significance of MYCN amplification and ploidy in favorable-stage neuroblastoma: a report from the Children’s Oncology Group. J Clin Oncol. 2008;26(6):913–8.

    Article  PubMed  Google Scholar 

  144. Bown N, et al. 17q gain in neuroblastoma predicts adverse clinical outcome U.K. Cancer Cytogenetics Group and the U.K. Children’s Cancer Study Group. Med Pediatr Oncol. 2001;36(1):14–9.

    Article  CAS  PubMed  Google Scholar 

  145. Moroz V, et al. The prognostic strength of serum LDH and serum ferritin in children with neuroblastoma: a report from the International Neuroblastoma Risk Group (INRG) project. Pediatr Blood Cancer. 2020;67(8):e28359.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all members of the Neuroscience Research Center, Faculty of Medicine, Lebanese University (Beirut, Lebanon), for their help on this work. This work was not funded.

Author information

Authors and Affiliations

Authors

Contributions

HFB and SN conceived the concept and idea of the present review. HFB and SN worked on the study design strategy and selected the topics to be discussed. FS, HH and YM did literature searches and screened titles and abstracts for relevance, abstracted the data from the eligible full text articles, analyzed and interpreted the data, and drafted the manuscript. ZS, HH, and YF critically revised the manuscript. HFB and SN critically revised the manuscript with input from the entire team. All authors have read and approved the final draft.

Corresponding authors

Correspondence to Hisham F. Bahmad MD MSc or Sanaa Nabha PhD.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuroendocrine Cancers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shawraba, F., Hammoud, H., Mrad, Y. et al. Biomarkers in Neuroblastoma: An Insight into Their Potential Diagnostic and Prognostic Utilities. Curr. Treat. Options in Oncol. 22, 102 (2021). https://doi.org/10.1007/s11864-021-00898-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11864-021-00898-1

Keywords

Navigation