Skip to main content
Log in

Changes of phenotype and function of human CD4+ CD25 T cells induced by transfection of Foxp3

  • Research Article
  • Published:
Frontiers of Medicine in China Aims and scope Submit manuscript

Abstract

The aim of this paper is to explore the effects of transfection of Foxp3 gene on the phenotype and function of naive CD4+ T cells. The pMSCV-Foxp3 retroviral vector encoding Foxp3 gene was transduced into the PT67 packaging cell line. Virus-containing supernatant was applied to differentiate CD4+CD25 T cells. The resulting cells were sorted with flow cytometry. The expressions of CD25, CD127, CTLA-4 and the proliferation of transfected T cells were examined. The effect of transfected CD4+ T cells on the proliferation and cytokine production of CD4+CD25 T cells was examined. Foxp3-gene transfected CD4+ T cells could express Foxp3 and transfection of Foxp3 gene up-regulated the expressions of CD25 and CTLA-4, but down-regulated CD127 expression. After transfection, the proliferation of CD4+ T cells was eliminated. Transfected T cells inhibited the proliferation of CD4+CD25 T cells. CD4+CD25 T cells acquired a regulatory phenotype and function after it was transduced with the Foxp3 gene. This suggested a key role of Foxp3 in the generation of CD4+CD25+ regulatory T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Von Boehmer H. Mechanisms of suppression by suppressor T cells. Nat Immunol, 2005, 6(4): 338–344

    Article  CAS  Google Scholar 

  2. Gavin M A, Rasmussen J P, Fontenot J D, Vasta V, Manganiello V C, Beavo J A, Rudensky A Y. Foxp3-dependent programme of regulatory T-cell differentiation. Nature, 2007, 445(7129): 771–775

    Article  PubMed  CAS  Google Scholar 

  3. Tang Q, Bluestone J A. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol, 2008, 9(3): 239–244

    Article  PubMed  CAS  Google Scholar 

  4. Kajsa W, Shimon S. Regulatory T cells as potential immunotherapy in allergy. Curr Opin Allergy Clin Immunol, 2006, 6(6): 482–488

    Article  Google Scholar 

  5. Williams L M, Rudensky A Y. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol, 2007, 8(3): 277–284

    Article  PubMed  CAS  Google Scholar 

  6. Wan Y Y, Flavell R A. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature, 2007, 445(7129): 766–770

    Article  PubMed  CAS  Google Scholar 

  7. Pillai V, Ortega S B, Wang C K, Karandikar N J. Transient regulatory T-cells: A state attained by all activated human Tcells. Clin Immunol, 2007, 123(1): 18–29

    Article  PubMed  CAS  Google Scholar 

  8. Wang J, Ioan-Facsinay A, van der Voort E I, Huizinga T W, Toes R E. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol, 2007, 37(1): 129–138

    Article  PubMed  CAS  Google Scholar 

  9. Bruder D, Probst-Kepper M, Westendorf A M, Geffers R, Beissert S, Loser K, Von Boehmer H, Buer J, Hansen W. Frontline: Neuropilin-1: a surface marker of regulatory T cells. Eur J Immunol, 2004, 34(3): 623–630

    Article  PubMed  CAS  Google Scholar 

  10. Zheng Y, Josefowicz S Z, Kas A, Chu T T, Gavin M A, Rudensky A Y. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature, 2007, 445(7130): 936–940

    Article  PubMed  CAS  Google Scholar 

  11. Fontenot J D, Gavin M A, Rudensky A Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol, 2003, 4(4): 330–336

    Article  PubMed  CAS  Google Scholar 

  12. Zheng Y, Rudensky A Y. Foxp3 in control of regulatory T cell lineage. Nat Immunol, 2007, 8(5): 457–462

    Article  PubMed  CAS  Google Scholar 

  13. Vignali D A, Collison L W, Workman C J. How regulatory T cells work. Nat Rev Immunol, 2008, 8(8): 523–532

    Article  PubMed  CAS  Google Scholar 

  14. Barnes P J. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol, 2008, 8(3): 183–192

    Article  PubMed  CAS  Google Scholar 

  15. Campbell D J, Ziegler S F. FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat Rev Immunol, 2007, 7(4): 305–310

    Article  PubMed  CAS  Google Scholar 

  16. Xystrakis E, Boswell S E, Hawrylowicz C M. T regulatory T cells and the control of allergic disease. Expert Opin Biol Ther, 2006, 6(2): 121–133

    Article  PubMed  CAS  Google Scholar 

  17. Lin Y L, Shieh C C, Wang J Y. The functional insufficiency of human CD4+CD25high T-regulatory cells in allergic asthma is subjected to TNF-α modulation. Allergy, 2008, 63(1): 67–74

    PubMed  CAS  Google Scholar 

  18. Hartl D, Koller B, Mehlhorn A T, Reinhardt D, Nicolai T, Schendel D J, Griese M, Krauss-Etschmann S. Quantitative and functional impairment of pulmonary CD4+CD25hi regulatory T cells in pediatric asthma. J Allergy Clin Immunol, 2007, 119(5): 1258–1266

    Article  PubMed  CAS  Google Scholar 

  19. Leech M D, Benson R A, De Vries A, Fitch P M, Howie S E. Resolution of Der p1-induced allergic airway inflammation is dependent on CD4+CD25+Foxp3+ regulatory cells. J Immunol, 2007, 179(10): 7050–7058

    PubMed  CAS  Google Scholar 

  20. Holgate S T, Polosa R. Treatment strategies for allergy and asthma. Nat Rev Immunol, 2008, 8(3): 218–230

    Article  PubMed  CAS  Google Scholar 

  21. Sun K, Lin K, Wu K, Wang C. Effects and mechanism of CD4+ CD25+ T cells on the airway inflammation of asthmatic mice. Zhonghua Jiehe He Huxi Zazhi, 2006, 29(2): 109–112 (in Chinese)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changzheng Wang.

Additional information

__________

Translated from Acta Academiae Medicinae Militaris Tertiae, 2008, 30(3): 186–188 [译自: 第三军医大学学报]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, K., Bi, Y., Wang, Y. et al. Changes of phenotype and function of human CD4+ CD25 T cells induced by transfection of Foxp3. Front. Med. China 2, 366–369 (2008). https://doi.org/10.1007/s11684-008-0070-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-008-0070-6

Keywords

Navigation