Skip to main content
Log in

On the Three-Dimensional Morphology of In Situ Grown TiB2 Particles in Molten Aluminum

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Al-TiB2 in situ composites are important class of structural materials where the TiB2 particles are grown in situ within the aluminum matrix. The true morphology of the in situ grown TiB2 particles is not clear as particles with different morphologies are reported in the literature. The present work reports the three-dimensional morphologies and habits of in situ grown TiB2 particles in aluminum-based composites by the halide slat method. TiB2 particles were grown in molten aluminum by the reaction of two fluoride salts; K2TiF6 and KBF4. The TiB2 particles exhibited truncated hexagonal pyramid morphology. It was found that the pyramidal planes are morphologically more important and the crystal is bounded by the fast-growing faces. The habit (predominant facet plane) and growth morphology of the crystals was analyzed through the kinetic-geometric model. The ratio of the relative growth rates of different forms was calculated. The pyramidal form can increase its size by growing faster than the adjacent faces, whereas the basal and prism forms decrease in size if they grow faster than the adjacent faces. We show that depending on the interfacial angle geometry, a given face may or may not enlarge, and the face needs not always constrain the crystal with the slowest growth rate. Both the theoretical analysis and the experiments demonstrate the particles to have hexagonal pyramidal morphology. Finally, the present work explains how past observations suggesting the TiB2 particles to have hexagonal, elongated hexagonal, rectangular, and cubic habits are due to the two-dimensional sections of the truncated hexagonal pyramid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Chawla and K.K. Chawla, Metal Matrix Composites, Springer, 2013. https://doi.org/10.1007/978-1-4614-9548-2

    Book  Google Scholar 

  2. S.C. Tjong and Z.Y. Ma, Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites, Mater. Sci. Eng. R, 2000, 29, p 49–113.

    Article  Google Scholar 

  3. R.G. Munro, Materials Properties of Titanium Diboride, J. Res. Natl. Inst. Stand. Technol., 2000, 105, p 709–720.

    Article  CAS  Google Scholar 

  4. N.E. Mahallawy, M.A. Taha, A.E.W. Jarfors and H. Fredriksson, On the Reaction Between Aluminium, K2TiF6 and KBF4, J. Alloys. Comp., 1999, 292, p 221–229.

    Article  Google Scholar 

  5. J. Fjellstedt and A.E.W. Jarfors, On the Precipitation of TiB2 in Aluminum Melts from the Reaction with KBF4 and K2TiF6, Mater. Sci. Eng. A, 2005, 413–415, p 527–532.

    Article  Google Scholar 

  6. Z. Liu, Q. Han, Z. Huang and J. Xing, A Quantitative Study of the Synthesis of TiB2 Particles via Salts-Metal Reaction at Different Temperatures, Metall. Mater. Trans. A, 2016, 47, p 916–926.

    Article  Google Scholar 

  7. https://materialsproject.org/materials/mp-1145/

  8. L. Lu, M.O. Lai and F.L. Chen, Al-4 wt.% Cu Composite Reinforced with In-Situ TiB2 Particles, Acta Mater., 1997, 45, p 4297–4309.

    Article  CAS  Google Scholar 

  9. K.L. Tee, L. Lu and M.O. Lai, Synthesis of In Situ Al-TiB2 Composites Using Stir Cast Route, Compos. Struct., 1999, 47, p 589–593.

    Article  Google Scholar 

  10. C. Wang, M. Wang, B. Yu, D. Chen, P. Qin, M. Feng and Q. Dai, The Grain Refinement Behaviour of TiB2 Particles Prepared with In Situ Technology, Mater. Sci. Eng. A, 2007, 459, p 238–243.

    Article  Google Scholar 

  11. I.G. Watson, M.F. Forster, P.D. Lee, R.J. Dashwood, R.W. Hamilton and A. Chirazi, Investigation of the Clustering Behaviour of Titanium Diboride Particles in Aluminium, Compos. A, 2005, 36, p 1177–1187.

    Article  Google Scholar 

  12. J. Yuan, G. Yao, S. Pan, N. Murali and X. Li, Size Control of In Situ Synthesized TiB2 Particles in Molten Aluminium, Metall. Mater. Trans. A, 2011, 52, p 2657–2666.

    Article  Google Scholar 

  13. L. Peng-Ting, L. Yun-Guo, N. Jin-Feng and L. Xiang-Fa, Influence of Forming Process on Three-Dimensional Morphology of TiB2 Particles in Al-Ti-B Alloys, Trans. Nonferrous Met. Soc. China, 2012, 22, p 564–570.

    Article  Google Scholar 

  14. I. Higashi and T. Atoda, Growth of Titanium Diboride Single Crystals in Molten Aluminium, J. Cryst. Growth, 1970, 7, p 251–253.

    Article  CAS  Google Scholar 

  15. J. Sun, X. Wang, L. Guo, X. Zhang and H. Wang, Synthesis of Nanoscale Spherical TiB2 Particles in Al Matrix by Regulating Sc Contents, J. Mater. Res., 2019, 34, p 1258–1265.

    Article  CAS  Google Scholar 

  16. C.F. Feng and L. Froyen, Microstructures of In Situ Al/TiB2 MMCs Prepared by a Casting Route, J. Mater. Sci., 2000, 35, p 837–850.

    Article  CAS  Google Scholar 

  17. S. Ji, F. Amirkhanlu, A. Mostaed and R. Beanland, Atomic Structure and Interface Chemistry in a High-Stiffness and High-Strength Al-Si-Mg/TiB2 Nanocomposite, Mater. Sci. Eng. A, 2019, 763, p 138072.

    Article  CAS  Google Scholar 

  18. Z.Y. Chen, Y.Y. Chen, Q. Shu and G.Y. An, Solidification and Interfacial Structure of In Situ Al-4.5Cu/TiB2 Composite, J. Mater. Sci., 2000, 35, p 5605–5608.

    Article  CAS  Google Scholar 

  19. A.A. Abdel-Hamid, S. Hamar-Thibault and R. Hamar, Crystal Morphology of the Compound TiB2, J. Cryst. Growth, 1985, 71, p 744–750.

    Article  CAS  Google Scholar 

  20. D. Yadav and R. Bauri, Friction Stir Processing of Al-TiB2 In Situ Composite: Effect on Particle Distribution, Microstructure and Properties, J. Mater. Eng. Perform., 2015, 24, p 1116–1124.

    Article  CAS  Google Scholar 

  21. M.I. Kozlovskii, Kinetics of Crystallization at Constant Temperature and Supersaturation, Kristallografiya, 1957, 2, p 760–769.

    CAS  Google Scholar 

  22. J. Prywer, Kinetic and Geometric Determination of the Growth Morphology of Bulk Crystals: Recent Developments, Prog. Cryst. Growth Charact., 2005, 50, p 1–38.

    Article  CAS  Google Scholar 

  23. M. Szurgot and J. Prywer, Growth Velocities and Disappearance of Faces of Crystals, Cryst. Res. Technol., 1991, 26, p 147–153.

    Article  CAS  Google Scholar 

  24. J. Prywer, Crystal Faces Existence and Morphological Stability from a Crystallographic Perspective, Cryst. Growth Des., 2003, 3, p 593–598.

    Article  CAS  Google Scholar 

  25. J. Prywer, Morphological Importance of Crystal Faces in Connection with Growth Rates and Crystallographic Structure of Crystal, Cryst. Growth Des., 2002, 2, p 281–286.

    Article  CAS  Google Scholar 

  26. J. Prywer, Effect of Crystal Geometry on Disappearance of Slow-Growing Faces, J. Cryst. Growth, 2001, 224, p 134–144.

    Article  CAS  Google Scholar 

  27. https://www.shapesoftware.com/

  28. K. Sugiyama, S. Iwakoshi, S. Mtojima and Y. Takahashi, Chemical Vapour Growth of Titanium Diboride by a Modified Hot Wire Method, J. Cryst. Growth, 1978, 43, p 533–536.

    Article  CAS  Google Scholar 

  29. P. Hartman and P. Bennema, The attachment energy as a habit controlling factor: I. Theoretical considerations, J. Cryst. Growth, 1980, 49, p 145–156.

    Article  CAS  Google Scholar 

  30. G. Liu, K. Chen, H. Zhou, J. Tian, C. Pereira and J.M.F. Ferreira, Fast Shape Evolution of TiN Microcrystals in Combustion Synthesis, Cryst. Growth Des., 2006, 6, p 2404–2411.

    Article  CAS  Google Scholar 

  31. N. He, J. Zhang, Y. Jin, F. Han, X. Zhang and G. Chen, Preparation, Microstructures and Mechanical Properties of in-situ TiB2/Al Composites by Mechanical Stirring and Subsequent Ultrasonic Treatment, Mater. Res. Express, 2019, 6, p 116553.

    Article  CAS  Google Scholar 

  32. A. Bravais, Etudes Cristallographiques, Gauthier-Villard, Paris, 1913.

    Google Scholar 

  33. G. Friedel, Leçon de Cristallographie, Hermann, Paris, 1911.

    Google Scholar 

  34. J.D.H. Donnay and D. Harker, A New Law of Crystal Morphology Extending the Law of Bravais, Am Mineral, 1937, 22, p 446–467.

    CAS  Google Scholar 

  35. J. Prywer and M.J. Krasiński, Review: Growth Morphology of Crystals from Kinetic and Geometric Perspective, Cryst. Res. Technol., 2007, 42, p 1190–1201.

    Article  CAS  Google Scholar 

  36. J. Prywer, On the Crystal Geometry Influence on the Growth of Fast-Growing Surfaces, J. Phys. Chem. Sol., 2002, 63, p 491–499.

    Article  CAS  Google Scholar 

  37. J. Sun, X. Zhang, Y. Zhang, N. Ma and H. Wang, Effect of Alloy Elements on the Morphology Transformation of TiB2 Particles in Al matrix, Micron, 2015, 70, p 21–25.

    Article  CAS  Google Scholar 

  38. W.K. Burton, N. Cabrera and F.C. Frank, The Growth of Crystals and the Equilibrium Structure of their Surfaces, Phil. Trans. Roy. Soc. Lond., 1951, 243(866), p 299–358.

    Article  Google Scholar 

  39. J. Prywer, Effect of Supersaturation on Evolution of Crystal Faces - Theoretical Analysis, J. Cryst. Growth, 2006, 289, p 630–638.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devinder Yadav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, C., Prywer, J. & Yadav, D. On the Three-Dimensional Morphology of In Situ Grown TiB2 Particles in Molten Aluminum. J. of Materi Eng and Perform 32, 9396–9404 (2023). https://doi.org/10.1007/s11665-022-07779-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07779-0

Keywords

Navigation