Skip to main content

Advertisement

Log in

Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Electrodes serve as the first critical interface to the biological organ system. In neuroprosthetic applications, for example, electrodes interface to the tissue for either signal recording or tissue stimulation. In this review, we consider electrodes for recording neural activity. Recording electrodes serve as wiretaps into the neural tissues, providing readouts of electrical activity. These signals give us valuable insights into the organization and functioning of the nervous system. The recording interfaces have also shown promise in aiding treatment of motor and sensory disabilities caused by neurological disorders. Recent advances in fabrication technology have generated wide interest in creating tiny, high-density electrode interfaces for neural tissues. An ideal electrode should be small enough and be able to achieve reliable and conformal integration with the structures of the nervous system. As a result, the existing electrode designs are being shrunk and packed to form small form factor interfaces to tissue. Here, an overview of the historic and state-of-the-art electrode technologies for recording neural activity is presented first with a focus on their development road map. The fact that the dimensions of recording electrode sites are being scaled down from micron to submicron scale to enable dense interfaces is appreciated. The current trends in recording electrode technologies are then reviewed. Current and future considerations in electrode design, including the use of inorganic nanostructures and biologically inspired or biocomapatible materials are discussed, along with an overview of the applications of flexible materials and transistor transduction schemes. Finally, we detail the major technical challenges facing chronic use of reliable recording electrode technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abidian MR, Ludwig KA, Marzullo TC, Martin DC, Kipke DR (2009) Interfacing conducting polymer nanotubes with the central nervous system: chronic neural recording using poly (3, 4-ethylenedioxythiophene) nanotubes. Adv Mater 21(37):3764–3770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abidian MR, Corey JM, Kipke DR, Martin DC (2010) Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. Small 6(3):421–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abidian MR, Martin DC (2008) Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials 29(9):1273–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abidian MR, Martin DC (2009) Multifunctional nanobiomaterials for neural interfaces. Adv Funct Mater 19(4):573–585

    Article  CAS  Google Scholar 

  5. Adrega T, Lacour S (2010) Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization. J Micromech Microeng 20(5):055025

    Article  CAS  Google Scholar 

  6. Adrian E (1928) The basis of sensation: the action of the sense organs. O-P books, Christophers

    Google Scholar 

  7. Al-Halhouli A, Kampen I, Krah T, Büttgenbach S (2008) Nanoindentation testing of SU-8 photoresist mechanical properties. Microelectron Eng 85(5):942–944

    Article  CAS  Google Scholar 

  8. Altuna A, de la Prida ML, Bellistri E (2012) SU-8 based microprobes with integrated planar electrodes for enhanced neural depth recording. Biosens Bioelectron 37(1):1–5

    Article  CAS  PubMed  Google Scholar 

  9. Altuna A, Bellistri E, Cid E, Aivar P, Gal B, Berganzo J (2013) SU-8 based microprobes for simultaneous neural depth recording and drug delivery in the brain. Lab Chip 13(7):1422–1430

    Article  CAS  PubMed  Google Scholar 

  10. Ansaldo A, Castagnola E, Maggiolini E, Fadiga L, Ricci D (2011) Superior electrochemical performance of carbon nanotubes directly grown on sharp microelectrodes. ACS Nano 5(3):2206–2214

    Article  CAS  PubMed  Google Scholar 

  11. Aregueta-Robles UA, Woolley AJ, Poole-Warren LA, Lovell NH, Green RA (2014) Organic electrode coatings for next-generation neural interfaces. Front Neuroeng 7:1–18

  12. Bai Q, Wise K, Anderson D (2000) A high-yield microassembly structure for three-dimensional microelectrode arrays. IEEE Trans Biomed Eng 47(3):281–289

    Article  CAS  PubMed  Google Scholar 

  13. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route toward applications. Science 297(5582):787–792

    Article  CAS  PubMed  Google Scholar 

  14. Bellamkonda R, Choi Y, Guo L, Srinivasan A (2012) Regenerative microchannel electrode array for peripheral nerve interfacing (WO 2012139124 A1) WO Patent App. PCT/US2012/032784. https://www.google.com.sg/patents/WO2012139124A1?cl=en&dq=Regenerative+microchannel+electrode+array+for+peripheral+nerve+interfacing&hl=en&sa=X&ved=0ahUKEwj5s5vl4ZHKAhVQVI4KHSJrCz4Q6AEIHDAA

  15. Blau A, Murr A, Wolff S, Sernagor E, Medini P, Iurilli G (2011) Flexible, all-polymer microelectrode arrays for the capture of cardiac and neuronal signals. Biomaterials 32(7):1778–1786

    Article  CAS  PubMed  Google Scholar 

  16. Bonde EH, Christopherson MA, Herbert TP, Geroy JD, Testerman RL (2012) Self expanding electrode cuff (US Patent 8,340,785)

  17. Boretius T, Badia J, A P (2010) A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens Bioelectron 26(1):62–69

    Article  CAS  PubMed  Google Scholar 

  18. Borschel G, Kia K Jr, K W (2003) Mechanical properties of acellular peripheral nerve. J Surg Res 114(2):133–139

    Article  PubMed  Google Scholar 

  19. Borton D, Micera S, Millán JdR, Courtine G (2013) Personalized neuroprosthetics. Sci Transl Med 5(210):1–12

    Article  Google Scholar 

  20. Bossi S, Menciassi A, Koch KP, Hoffmann KP, Yoshida K, Dario P, Micera S (2007) Shape memory alloy microactuation of tf-LIFEs: preliminary results. IEEE Trans Biomed Eng 54(6):1115–1120

    Article  PubMed  Google Scholar 

  21. Bossi S, Kammer S, Drge T, Menciassi A, Hoffmann K, Micera S (2009) An implantable microactuated intrafascicular electrode for peripheral nerves. IEEE Trans Biomed Eng 56(11):2701–2706

    Article  PubMed  Google Scholar 

  22. Bradley RM, Cao X, Akin T, Najafi K (1997) Long term chronic recordings from peripheral sensory fibers using a sieve electrode array. J Neurosci Methods 73(2):177–186

    Article  CAS  PubMed  Google Scholar 

  23. Branner A, Stein R, Normann R (2001) Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes. J Neurophysiol 85(4):1585–1594

    CAS  PubMed  Google Scholar 

  24. Branner A, Normann R (2000) A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats. Brain Res Bull 51(4):293–306

    Article  CAS  PubMed  Google Scholar 

  25. Brüggemann D, Wolfrum B, Maybeck V, Mourzina Y, Jansen M, Offenhäusser A (2011) Nanostructured gold microelectrodes for extracellular recording from electrogenic cells. Nanotechnology 22(26):265104

    Article  PubMed  CAS  Google Scholar 

  26. Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7(5):446–451

    Article  PubMed  CAS  Google Scholar 

  27. Ceballos D, Valero-Cabré A, Valderrama E, Schüttler M, Stieglitz T, Navarro X (2002) Morphologic and functional evaluation of peripheral nerve fibers regenerated through polyimide sieve electrodes over long-term implantation. J Biomed Mater Res 60(4):517–528

    Article  CAS  PubMed  Google Scholar 

  28. Chae SJ, Güneş F, Kim KK, Kim ES, Han GH, Kim SM, Shin HJ, Yoon SM, Choi JY, Park MH et al (2009) Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 21(22):2328–2333

    Article  CAS  Google Scholar 

  29. Chan H, Aslam D, Wiler J (2009) A novel diamond microprobe for neuro-chemical and-electrical recording in neural prosthesis. J Microelectromech Syst 18(3):511–521

    Article  CAS  Google Scholar 

  30. Chen YC, Hsu HL, Lee YT, Su HC, Yen SJ, Chen CH, Hsu WL, Yew TR, Yeh SR, Yao DJ et al (2011) An active, flexible carbon nanotube microelectrode array for recording electrocorticograms. J Neural Eng 8(3):034001

    Article  PubMed  Google Scholar 

  31. Chen CH, Lin CT, Hsu WL, Chang YC, Yeh SR, Li LJ, Yao DJ (2013) A flexible hydrophilic-modified graphene microprobe for neural and cardiac recording. Nanomed Nanotechnol Biol Med 9(5):600–604

    Article  CAS  Google Scholar 

  32. Cheung K, Renaud P, Tanila H, Djupsund K (2007) Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosens Bioelectron 22(8):1783–1790

    Article  CAS  PubMed  Google Scholar 

  33. Chu JU, Song KI, Han S, Lee SH, Kim J, Kang JY, Hwang D, Suh JKF, Choi K, Youn I (2012) Improvement of signal-to-interference ratio and signal-to-noise ratio in nerve cuff electrode systems. Physiol Measurement 33(6):943

    Article  Google Scholar 

  34. Clements IP, Mukhatyar VJ, Srinivasan A, Bentley JT, Andreasen DS, Bellamkonda RV (2013) Regenerative scaffold electrodes for peripheral nerve interfacing. IEEE Trans Neural Syst Rehabil Eng 21(4):554–566

    Article  PubMed  Google Scholar 

  35. Cogan SF (2008) Neural stimulation and recording electrodes. Ann Rev Biomed Eng 10:275–309

    Article  CAS  Google Scholar 

  36. Cohen-Karni T, Qing Q, Li Q, Fang Y, Lieber CM (2010) Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett 10(3):1098–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Csicsvari J, Henze DA, Jamieson B, Harris KD, Sirota A, Barth P, Wise KD, Buzski G (2003) Massively parallel recording of unit and local field potentials with silicon-based electrodes. J Neurophysiol 90(2):1314–1323

    Article  PubMed  Google Scholar 

  38. Cui X, Wiler J, Dzaman M, Altschuler RA, Martin DC (2003) In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials 24(5):777–787

    Article  CAS  PubMed  Google Scholar 

  39. Dowben RM, Rose JE (1953) A metal-filled microelectrode. Science 118(3053):22–24

    Article  CAS  PubMed  Google Scholar 

  40. DuPontTM Kapton® HN Data Sheet. http://www.dupont.com/content/dam/dupont/products-and-services/membranes-and-films/polyimde-films/documents/DEC-Kapton-HN-datasheet.pdf

  41. Durand DM, Ghovanloo M, Krames E (2014) Time to address the problems at the neural interface. J Neural Eng 11(2):020201

    Article  PubMed  Google Scholar 

  42. Duysens J, Stein R (1978) Reflexes induced by nerve stimulation in walking cats with implanted cuff electrodes. Exp Brain Res 32(2):213–224

    Article  CAS  PubMed  Google Scholar 

  43. Edell DJ (1986) A peripheral nerve information transducer for amputees: long-term multichannel recordings from rabbit peripheral nerves. IEEE Trans Biomed Eng 33(2):203–214

    Article  CAS  PubMed  Google Scholar 

  44. Escabi MA, Read HL, Viventi J, Kim DH, Higgins NC, Storace D, Liu AS, Gifford AM, Burke JF, Campisi M, Kim YS, Avrin AE, Van der Spiegel J, Huang Y, Li M, Wu J, Rogers JA, Litt B, Cohen YE (2014) A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings. J Neurophysiol 112(6):1566–1583

    Article  PubMed  PubMed Central  Google Scholar 

  45. F L, Boya J, Alamo C (2006) Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal. Brain Res Bull 70(4–6):391–405

    Google Scholar 

  46. Fattahi P, Yang G, Kim G, Abidian MR (2014) A review of organic and inorganic biomaterials for neural interfaces. Adv Mater 26(12):1846–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fincher CR Jr, Ozaki M, Heeger A, MacDiarmid A (1979) Donor and acceptor states in lightly doped polyacetylene,(CH)x. Phys Rev B 19(8):4140

    Article  CAS  Google Scholar 

  48. Fitch M, Silver J (1997) Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules. Exp Neurol 148(2):587–603

    Article  CAS  PubMed  Google Scholar 

  49. FitzGerald JJ, Lago N, Benmerah S, Serra J, Watling CP, Cameron RE, Tarte E, Lacour SP, McMahon SB, Fawcett JW (2012) A regenerative microchannel neural interface for recording from and stimulating peripheral axons in vivo. J Neural Eng 9(1):016010

    Article  PubMed  Google Scholar 

  50. Forrest SR, Thompson ME (2007) Introduction: organic electronics and optoelectronics. Chem Rev 107(4):923–925

    Article  CAS  Google Scholar 

  51. Franks W, Schenker I, Schmutz P, Hierlemann A (2005) Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans Biomed Eng 52(7):1295–1302

    Article  PubMed  Google Scholar 

  52. Gelinck GH, Huitema HEA, van Veenendaal E, Cantatore E, Schrijnemakers L, van der Putten JB, Geuns TC, Beenhakkers M, Giesbers JB, Huisman BH et al (2004) Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater 3(2):106–110

    Article  CAS  PubMed  Google Scholar 

  53. Gerwig R, Fuchsberger K, Schroeppel B, Link GS, Heusel G, Kraushaar U, Schuhmann W, Stett A, Stelzle M (2012) PEDOT-CNT composite microelectrodes for recording and electrostimulation applications: fabrication, morphology, and electrical properties. Front Neuroeng 5(8):1–11

    Google Scholar 

  54. Gierthmuehlen M, Freiman TM, Haastert-Talini K, Mueller A, Kaminsky J, Stieglitz T, Plachta DT (2013) Computational tissue volume reconstruction of a peripheral nerve using high-resolution light-microscopy and reconstruct. PloS One 8(6):e66191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gilletti A, Muthuswamy J (2006) Brain micromotion around implants in the rodent somatosensory cortex. J Neural Eng 3(3):189

    Article  PubMed  Google Scholar 

  56. Green J (1958) A simple microelectrode for recording from the central nervous system. Nature 182:962

    Article  CAS  PubMed  Google Scholar 

  57. Green MA, Bilston LE, Sinkus R (2008) In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR in Biomed 21(7):755–764

    Article  Google Scholar 

  58. Greenwald E, Masters MR, Thakor NV (2016) Implantable neurotechnologies: bidirectional neural interfaces—applications and VLSI circuit implementations. Med Biol Eng Comput 54(1). doi:10.1007/s11517-015-1429-x

  59. Griffith RW, Humphrey DR (2006) Long-term gliosis around chronically implanted platinum electrodes in the rhesus macaque motor cortex. Neurosci Lett 406(1):81–86

    Article  CAS  PubMed  Google Scholar 

  60. Grill W, Tarler M, Mortimer J (1996) Implantable helical spiral cuff electrode (US 5505201)

  61. Guitchounts G, Markowitz JE, Liberti WA, Gardner TJ (2013) A carbon-fiber electrode array for long-term neural recording. J Neural Eng 10(4):046016

    Article  PubMed  Google Scholar 

  62. Guo P, Pollack AJ, Varga AG, Martin JP, Ritzmann RE (2014) Extracellular wire tetrode recording in brain of freely walking insects. J Visual Exp 86:e51337

    Google Scholar 

  63. Hallin R, Hongell A, Hagbarth KE et al (1970) Single unit potentials with complex waveform seen in microelectrode recordings from the human median nerve. Brain Res 24(3):443–450

    Article  PubMed  Google Scholar 

  64. Hamill O, Marty A, Neher E, Sakmann B, Sigworth F (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv 391(2):85–100

    Article  CAS  PubMed  Google Scholar 

  65. Hassler C, Boretius T, Stieglitz T (2011) Polymers for neural implants. J Polym Sci Part B Polym Phys 49(1):18–33

    Article  CAS  Google Scholar 

  66. Hess LH, Jansen M, Maybeck V, Hauf MV, Seifert M, Stutzmann M, Sharp ID, Offenhäusser A, Garrido JA (2011) Graphene transistor arrays for recording action potentials from electrogenic cells. Adv Mater 23(43):5045–5049

    Article  CAS  PubMed  Google Scholar 

  67. Hinke J (1959) Glass micro-electrodes for measuring intracellular activities of sodium and potassium. Nature 184:1257–1258

    Article  CAS  PubMed  Google Scholar 

  68. Hodgkin AL, Huxley A, Katz B (1952) Measurement of current-voltage relations in the membrane of the giant axon of loligo. J Physiol 116(4):424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hoshino T, Ozasa A, Kometani R, Suzuki T, Matsui S, Mabuchi K (2006) Development of a regeneration-type neural interface: a microtube guide for axon growth of neuronal cells fabricated using focused-ion-beam chemical vapor deposition. J Vac Sci Technol B 24(6):2538–2543

    Article  CAS  Google Scholar 

  71. Huang SH, Lin SP, Chen JJ (2014) In vitro and in vivo characterization of SU-8 flexible neuroprobe: from mechanical properties to electrophysiological recording. Sens Actuat A Phys 216:257–265

    Article  CAS  Google Scholar 

  72. Hubel D (1957) Tungsten microelectrode for recording from single units. Science 125(3247):549–550

    Article  CAS  PubMed  Google Scholar 

  73. Hubel D, Wiesel T (1959) Receptive fields of single neurones in the cat’s striate cortex. J Physiol 148(3):574–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hutzler M, Fromherz P (2004) Silicon chip with capacitors and transistors for interfacing organotypic brain slice of rat hippocampus. Eur J Neurosci 19(8):2231–2238

    Article  PubMed  Google Scholar 

  75. Insel TR, Landis SC, Collins FS (2013) The NIH brain initiative. Science 340(6133):687–688

    Article  CAS  PubMed  Google Scholar 

  76. Jackson A, Fetz EE (2007) Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates. J Neurophysiol 98(5):3109–3118

    Article  PubMed  Google Scholar 

  77. Ji J, Wise K (1992) An implantable CMOS circuit interface for multiplexed microelectrode recording arrays. IEEE J Solid-State Circuits 27(3):433–443

    Article  Google Scholar 

  78. Kang M, Jung S, Zhang H, Kang T, Kang H, Yoo Y, Hong JP, Ahn JP, Kwak J, Jeon D, Kotov NA, Kim B (2014) Subcellular neural probes from single-crystal gold nanowires. ACS Nano 8(8):8182–8189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW (2008) Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol 3(7):434–439

    Article  CAS  PubMed  Google Scholar 

  80. Kennedy PR (1989) The cone electrode: a long-term electrode that records from neurites grown onto its recording surface. J Neurosci Methods 29(3):181–193

    Article  CAS  PubMed  Google Scholar 

  81. Kennedy PR, Mirra SS, Bakay RA (1992) The cone electrode: ultrastructural studies following long-term recording in rat and monkey cortex. Neurosci Lett 142(1):89–94

    Article  CAS  PubMed  Google Scholar 

  82. Kent AR, Grill WM (2013) Model-based analysis and design of nerve cuff electrodes for restoring bladder function by selective stimulation of the pudendal nerve. J Neural Eng 10(3):036010

    Article  PubMed  PubMed Central  Google Scholar 

  83. Khodagholy D, Doublet T, Gurfinkel M, Quilichini P, Ismailova E, Leleux P, Herve T, Sanaur S, Bernard C, Malliaras GG (2011) Highly conformable conducting polymer electrodes for in vivo recordings. Adv Mater 23(36):H268–H272

    Article  CAS  PubMed  Google Scholar 

  84. Khodagholy D, Doublet T, Quilichini P, Gurfinkel M, Leleux P, Ghestem A, Ismailova E, Herve T, Sanaur S, Bernard C et al. (2013) In vivo recordings of brain activity using organic transistors. Nat Commun 4(1575):1–7

    Google Scholar 

  85. Kim DH, Song J, Choi WM, Kim HS, Kim RH, Liu Z, Huang YY, Hwang KC, Yw Zhang, Rogers JA (2008) Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci 105(48):18675–18680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim S, Bhandari R, Klein M, Negi S, Rieth L, Tathireddy P, Toepper M, Oppermann H, Solzbacher F (2008) Integrated wireless neural interface based on the Utah electrode array. Biomed Microdev 11(2):453–466

    Article  Google Scholar 

  87. Kim DH, Viventi J, Amsden JJ, Xiao J, Vigeland L, Kim YS, Blanco JA, Panilaitis B, Frechette ES, Contreras D et al (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9(6):511–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kim DH, Xiao J, Song J, Huang Y, Rogers JA (2010) Stretchable, curvilinear electronics based on inorganic materials. Adv Mater 22(19):2108–2124

    Article  CAS  PubMed  Google Scholar 

  89. Kim JH, Kang G, Nam Y, Choi YK (2010) Surface-modified microelectrode array with flake nanostructure for neural recording and stimulation. Nanotechnology 21(8):085303

    Article  CAS  Google Scholar 

  90. Kim DH, Lu N, Ma R, Kim YS, Kim RH, Wang S, Wu J, Won SM, Tao H, Islam A et al (2011) Epidermal electronics. Science 333(6044):838–843

    Article  CAS  PubMed  Google Scholar 

  91. Kim R, Hong N, Nam Y (2013) Gold nanograin microelectrodes for neuroelectronic interfaces. Biotechnol J 8(2):206–214

    Article  CAS  PubMed  Google Scholar 

  92. Kim E, John J, Tu H, Zheng Q, Loeb J, Zhang J, Xu Y (2014) A hybrid silicon-parylene neural probe with locally flexible regions. Sens Actuat B Chem 195:416–422

    Article  CAS  Google Scholar 

  93. Kipke DR, Vetter RJ, Williams JC, Hetke JF (2003) Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans Neural Syst Rehabil Eng 11(2):151–155

    Article  PubMed  Google Scholar 

  94. Kittlesen GP, White HS, Wrighton MS (1984) Chemical derivatization of microelectrode arrays by oxidation of pyrrole and N-methylpyrrole: fabrication of molecule-based electronic devices. J Am Chem Soc 106(24):7389–7396

    Article  CAS  Google Scholar 

  95. Ko HC, Shin G, Wang S, Stoykovich MP, Lee JW, Kim DH, Ha JS, Huang Y, Hwang KC, Rogers JA (2009) Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small 5(23):2703–2709

    Article  CAS  PubMed  Google Scholar 

  96. Kohli S, Rithner C, Dorhout P (2002) X-ray characterization of annealed iridium films. J Appl Phys 91(3):1149–1154

    Article  CAS  Google Scholar 

  97. Kotov NA, Winter JO, Clements IP, Jan E, Timko BP, Campidelli S, Pathak S, Mazzatenta A, Lieber CM, Prato M, Bellamkonda RV, Silva GA, Kam NWS, Patolsky F, Ballerini L (2009) Nanomaterials for neural interfaces. Adv Mater 21(40):3970–4004

    Article  CAS  Google Scholar 

  98. Kovacs GT, Storment CW, Halks-Miller M, Belczynski C Jr, Santina CD, Lewis E, Maluf NI (1994) Silicon-substrate microelectrode arrays for parallel recording of neural activity in peripheral and cranial nerves. IEEE Trans Biomed Eng 41(6):567–577

    Article  CAS  PubMed  Google Scholar 

  99. Kozai TD, Langhals NB, Patel PR, Deng X, Zhang H, Smith KL, Lahann J, Kotov NA, Kipke DR (2012) Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat Mater 11(12):1065–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kruger J, Bach M (1981) Simultaneous recording with 30 microelectrodes in monkey visual cortex. Exp Brain Res 41(2):191–194

    Article  CAS  PubMed  Google Scholar 

  101. Kuo J, Kim B, Hara S, Lee C, Gutierrez C, Hoang T, Meng E (2013) Novel flexible parylene neural probe with 3D sheath structure for enhancing tissue integration. Lab Chip 13(4):554–561

    Article  CAS  PubMed  Google Scholar 

  102. Kuzum D, Takano H, Shim E, Reed JC, Juul H, Richardson AG, de Vries J, Bink H, Dichter MA, Lucas TH, Coulter DA, Ertugrul C, Brian L (2014) Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat Commun 5(5259):1–10

    Google Scholar 

  103. Lacour SP, Atta R, FitzGerald JJ, Blamire M, Tarte E, Fawcett J (2008) Polyimide micro-channel arrays for peripheral nerve regenerative implants. Sens Actuat A Phys 147(2):456–463

    Article  CAS  Google Scholar 

  104. Lacour SP, Benmerah S, Tarte E, James F, Serra J, Stephen M, Fawcett J, Graudejus O, Yu Z, Morrison B (2010) Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med Biol Eng Comput 48(10):945–954

    Article  PubMed  Google Scholar 

  105. Lago N, Yoshida K, Koch KP, Navarro X (2007) Assessment of biocompatibility of chronically implanted polyimide and platinum intrafascicular electrodes. IEEE Trans Biomed Eng 54(2):281–290

    Article  PubMed  Google Scholar 

  106. Lai HY, Liao LD, Lin CT, Hsu JH, He X, Chen YY, Chang JY, Chen HF, Tsang S, Shih YY (2012) Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording. J Neural Eng 9(3):036001

    Article  PubMed  Google Scholar 

  107. Lawrence SM, Dhillon GS, Horch KW (2003) Fabrication and characteristics of an implantable, polymer-based, intrafascicular electrode. J Neurosci Methods 131(1–2):9–26

    Article  CAS  PubMed  Google Scholar 

  108. Lehew G, Nicolelis MA (2008) State-of-the-art microwire array design for chronic neural recordings in behaving animals, vol. 2. CRC Press, Boca Raton, FL, pp 361–371

    Google Scholar 

  109. Levick W (1972) Another tungsten microelectrode. Med Biol Eng 10(4):510–515

    Article  CAS  PubMed  Google Scholar 

  110. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314

    Article  CAS  PubMed  Google Scholar 

  111. Li X, Magnuson CW, Venugopal A, Tromp RM, Hannon JB, Vogel EM, Colombo L, Ruoff RS (2011) Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc 133(9):2816–2819

    Article  CAS  PubMed  Google Scholar 

  112. Li CL, Jasper H (1953) Microelectrode studies of the electrical activity of the cerebral cortex in the cat. J Physiol 121(1):117–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lin CM, Lee YT, Yeh SR, Fang W (2009) Flexible carbon nanotubes electrode for neural recording. Biosens Bioelectron 24(9):2791–2797

    Article  CAS  PubMed  Google Scholar 

  114. Loeb G, Marks W, Beatty P (1977) Analysis and microelectronic design of tubular electrode arrays intended for chronic, multiple singleunit recording from captured nerve fibres. Med Biol Eng Comput 15(2):195–201

    Article  CAS  PubMed  Google Scholar 

  115. Ludwig KA, Langhals NB, Joseph MD, Richardson-Burns SM, Hendricks JL, Kipke DR (2011) Poly(3,4-ethylenedioxythiophene)(PEDOT) polymer coatings facilitate smaller neural recording electrodes. J Neural Eng 8(1):014001

    Article  PubMed  PubMed Central  Google Scholar 

  116. MacDiarmid AG (2001) Synthetic metals: a novel role for organic polymers. Synth Metals 125(1):11–22

    Article  Google Scholar 

  117. Malagodi M, Horch K, Schoenberg A (1989) An intrafascicular electrode for recording of action potentials in peripheral nerves. Ann Biomed Eng 17(4):397–410

    Article  CAS  PubMed  Google Scholar 

  118. Mannard A, Stein RB, Charles D (1974) Regeneration electrode units: implants for recording from single peripheral nerve fibers in freely moving animals. Science 183(4124):547–549

    Article  CAS  PubMed  Google Scholar 

  119. Marg E, Adams J (1967) Indwelling multiple micro-electrodes in the brain. Electroencephalogr Clin Neurophysiol 23(3):277–280

    Article  CAS  PubMed  Google Scholar 

  120. Marin C, Fernndez E (2010) Biocompatibility of intracortical microelectrodes: current status and future prospects. Front Neuroeng 3(8):1–6

    Google Scholar 

  121. Marks A (1969) Bullfrog nerve regeneration into porous implants. Anatom Rec 163:226

    Google Scholar 

  122. Mathews KS, Wark HA, Normann RA (2014) Assessment of rat sciatic nerve function following acute implantation of high density utah slanted electrode array (25 electrodes/mm\(^2\)) based on neural recordings and evoked muscle activity. Muscle Nerve 50(3):417–424

    Article  PubMed  Google Scholar 

  123. Mathur A, Collinsworth A, Reichert W (2001) Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J Biomech 34(12):1545–1553

    Article  CAS  PubMed  Google Scholar 

  124. Mattevi C, Kim H, Chhowalla M (2011) A review of chemical vapour deposition of graphene on copper. J Mater Chem 21(10):3324–3334

    Article  CAS  Google Scholar 

  125. Maynard EM, Nordhausen CT, Normann RA (1997) The utah intracortical electrode array: a recording structure for potential brain-computer interfaces. Electroencephalogr Clin Neurophysiol 102(3):228–239

    Article  CAS  PubMed  Google Scholar 

  126. Maynard EM, Hatsopoulos NG, Ojakangas CL, Acuna BD, Sanes JN, Normann RA, Donoghue JP (1999) Neuronal interactions improve cortical population coding of movement direction. J Neurosci 19(18):8083–8093

    CAS  PubMed  Google Scholar 

  127. McCarthy PT, Otto KJ, Rao MP (2011) Robust penetrating microelectrodes for neural interfaces realized by titanium micromachining. Biomed Microdev 13(3):503–515

    Article  Google Scholar 

  128. McClain MA (2010) Elastomer-based microcable electrodes for electrophysiological applications. Ph.D. thesis, Georgia Institute of Technology

  129. Memberg WD, Polasek KH, Hart RL, Bryden AM, Kilgore KL, Nemunaitis GA, Hoyen HA, Keith MW, Kirsch RF (2014) Implanted neuroprosthesis for restoring arm and hand function in people with high level tetraplegia. Arch Phys Med Rehabil 95(6):1201–1211

    Article  PubMed  PubMed Central  Google Scholar 

  130. Menard E, Meitl MA, Sun Y, Park JU, Shir DJL, Nam YS, Jeon S, Rogers JA (2007) Micro-and nanopatterning techniques for organic electronic and optoelectronic systems. Chem Rev 107(4):1117–1160

    Article  CAS  PubMed  Google Scholar 

  131. Mercanzini A, Cheung K, Buhl D, Boers M, Maillard A, Colin P, Bensadoun JC, Bertsch A, Renaud P (2008) Demonstration of cortical recording using novel flexible polymer neural probes. Sens Actuat A Phys 143(1):90–96

    Article  CAS  Google Scholar 

  132. Meyer RD, Cogan SF, Nguyen TH, Rauh RD (2001) Electrodeposited iridium oxide for neural stimulation and recording electrodes. IEEE Trans Neural Syst Rehabil Eng 9(1):2–11

    Article  CAS  PubMed  Google Scholar 

  133. Micera S, Rossini PM, Rigosa J, Citi L, Carpaneto J, Raspopovic S, Tombini M, Cipriani C, Assenza G, Carrozza MC, Hoffmann KP, Yoshida K, Navarro X, Dario P (2011) Decoding of grasping information from neural signals recorded using peripheral intrafascicular interfaces. J Neuroeng Rehabil 8(53):1–10

    Google Scholar 

  134. Minev IR, Musienko P, Hirsch A, Barraud Q, Wenger N, Moraud EM, Gandar J, Capogrosso M, Milekovic T, Asboth L, Torres RF, Vachicouras N, Liu Q, Pavlova N, Duis S, Larmagnac A, Voros J, Micera S, Suo Z, Courtine G, Lacour SP (2015) Electronic dura mater for long-term multimodal neural interfaces. Science 347(6218):159–163

    Article  CAS  PubMed  Google Scholar 

  135. Moran D, Christiansen B, MacEwan M (2014) Bipolar sieve electrode and method of assembly (US Patent 8,792,973)

  136. Moxon K, Leiser SC, Gerhardt G, Barbee K, Chapin JK et al (2004) Ceramic-based multisite electrode arrays for chronic single-neuron recording. IEEE Trans Biomed Eng 51(4):647–656

    Article  PubMed  Google Scholar 

  137. Myllymaa S, Myllymaa K, Korhonen H, Tyrs J, Jskelinen J, Djupsund K, Tanila H, Lappalainen R (2009) Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials. Biosens Bioelectron 24(10):3067–3072

    Article  CAS  PubMed  Google Scholar 

  138. Nag S, Thakor NV (2016) Implantable neurotechnologies: electrical stimulation and applications. Med Biol Eng Comput 54(1). doi: 10.1007/s11517-015-1442-0

  139. Navarro X, Calvet S, Rodriguez F, Stieglitz T, Blau C, Buti M, Valderrama E, Meyer J (1997) Stimulation and recording from regenerated peripheral nerves through polyimide sieve electrodes. J Peripher Nerv Syst 3(2):91–101

    Google Scholar 

  140. Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10(3):229–258

    Article  PubMed  Google Scholar 

  141. Negredo P, Castro J, Lago N, Navarro X, Avendaño C (2004) Differential growth of axons from sensory and motor neurons through a regenerative electrode: a stereological, retrograde tracer, and functional study in the rat. Neuroscience 128(3):605–615

    Article  CAS  PubMed  Google Scholar 

  142. Neher E, Sakmann B, Steinbach JH (1978) The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflügers Arch 375(2):219–228

    Article  CAS  PubMed  Google Scholar 

  143. Neisz H, Cardinal R, Shiroff J, Skubitz JJ (2013) Cuff electrode having tubular body with controlled closing force (US Patent 8,612,025)

  144. Ng KA, Greenwald E, Xu YP, Thakor NV (2016) Implantable Neurotechnologies: a review of integrated circuit neural amplifiers. Med Biol Eng Comput 54(1). doi:10.1007/s11517-015-1431-3

    Google Scholar 

  145. Nicolelis M, Ghazanfar A, Faggin B, Votaw S, Oliveira L (1997) Reconstructing the engram: simultaneous, multisite, many single neuron recordings. Neuron 18(4):529–537

    Article  CAS  PubMed  Google Scholar 

  146. Nicolelis MA, Dimitrov D, Carmena JM, Crist R, Lehew G, Kralik JD, Wise SP (2003) Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Natl Acad Sci 100(19):11041–11046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nordhausen C, Maynard E, Normann R (1996) Single unit recording capabilities of a 100 microelectrode array. Brain Res 726(1–2):129–140

    Article  CAS  PubMed  Google Scholar 

  148. Novoselov KS, Fal V, Colombo L, Gellert P, Schwab M, Kim K et al (2012) A roadmap for graphene. Nature 490(7419):192–200

    Article  CAS  PubMed  Google Scholar 

  149. Nyström B, Hagbarth KE (1981) Microelectrode recordings from transected nerves in amputees with phantom limb pain. Neurosci Lett 27(2):211–216

    Article  PubMed  Google Scholar 

  150. Otto KJ, Johnson MD, Kipke DR (2006) Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes. IEEE Trans Biomed Eng 53(2):333–340

    Article  PubMed  Google Scholar 

  151. Pancrazio JJ (2008) Neural interfaces at the nanoscale. Nanomedicine 3(6):823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Park DW, Schendel AA, Mikael S, Brodnick SK, Richner TJ, Ness JP, Hayat MR, Atry F, Frye ST, Pashaie R, Sanitta T, C MZWJ (2014) Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat Commun 5(5258):1–11

    CAS  Google Scholar 

  153. Park S, Song YJ, Boo H, Chung TD (2010) Nanoporous Pt microelectrode for neural stimulation and recording: in vitro characterization. J Phys Chem C 114(19):8721–8726

    Article  CAS  Google Scholar 

  154. Piccolino M (1997) Luigi galvani and animal electricity: two centuries after the foundation of electrophysiology. Trends Neurosci 20(10):443–448

    Article  CAS  PubMed  Google Scholar 

  155. Polikov VS, Tresco PA, Reichert WM (2005) Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 148(1):1–18

    Article  PubMed  Google Scholar 

  156. Qing Q, Pal SK, Tian B, Duan X, Timko BP, Cohen-Karni T, Murthy VN, Lieber CM (2010) Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc Natl Acad Sci 107(5):1882–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Renshaw B, Forbes A, Morison BR (1940) Activity of isocortex and hippocampus: electrical studies with micro-electrodes. J Neurophysiol 3(1):74–105

    Google Scholar 

  158. Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 327(5973):1603–1607

    Article  CAS  PubMed  Google Scholar 

  159. Rossini PM, Micera S, Benvenuto A, Carpaneto J, Cavallo G, Citi L, Cipriani C, Denaro L, Denaro V, Di Pino G, Ferreri F, Guglielmelli E, Hoffmann KP, Raspopovic S, Rigosa J, Rossini L, Tombini M, Dario P (2010) Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol 121(5):777–783

    Article  PubMed  Google Scholar 

  160. Rousche P, Normann R (1998) Chronic recording capability of the utah intracortical electrode array in cat sensory cortex. J Neurosci Methods 82(1):1–15

    Article  CAS  PubMed  Google Scholar 

  161. Rubehn B, Bosman C, Oostenveld R, Fries P, Stieglitz T (2009) A MEMS-based flexible multichannel ECoG-electrode array. J Neural Eng 6:036003

    Article  PubMed  Google Scholar 

  162. Ryu SI, Shenoy KV (2009) Human cortical prostheses: lost in translation? Neurosurg Focus 27(1):E5

    Article  PubMed  PubMed Central  Google Scholar 

  163. Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Ann Rev Physiol 46(1):455–472

    Article  CAS  Google Scholar 

  164. Salcman M, Bak MJ (1973) Design, fabrication, and in vivo behavior of chronic recording intracortical microelectrodes. IEEE Trans Biomed Eng 4(BME–20):253–260

    Article  Google Scholar 

  165. Schmidt E, McIntosh J, Durelli L, Bak M (1978) Fine control of operantly conditioned firing patterns of cortical neurons. Exp Neurol 61(2):349–369

    Article  CAS  PubMed  Google Scholar 

  166. Schmidt E, McIntosh J, Durelli L, Bak M (1978) Fine control of operantly conditioned firing patterns of cortical neurons. Exp Neurol 61(2):349–369

    Article  CAS  PubMed  Google Scholar 

  167. Schuettler M, Donaldson N, Seetohul V, Taylor J (2013) Fibre-selective recording from the peripheral nerves of frogs using a multi-electrode cuff. J Neural Eng 10(3):036016

    Article  PubMed  Google Scholar 

  168. Schwarz DA, Lebedev MA, Hanson TL, Dimitrov DF, Lehew G, Meloy J, Rajangam S, Subramanian V, Ifft PJ, Li Z, Ramakrishnan A, Tate A, Zhuang KZ, Nicolelis MA (2014) Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat Methods 11(6):670–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP (2002) Instant neural control of a movement signal. Nature 416(6877):141–142

    Article  CAS  PubMed  Google Scholar 

  170. Shirakawa H (2001) The discovery of polyacetylene film-the dawning of an era of conducting polymers. Curr Appl Phys 1(4):281–286

    Article  Google Scholar 

  171. Song J, Jiang H, Huang Y, Rogers J (2009) Mechanics of stretchable inorganic electronic materials. J Vac Sci Technol A 27(5):1107–1125

    Article  CAS  Google Scholar 

  172. Song J, Kam FY, Png RQ, Seah WL, Zhuo JM, Lim GK, Ho PK, Chua LL (2013) A general method for transferring graphene onto soft surfaces. Nat Nanotechnol 8(5):356–362

    Article  CAS  PubMed  Google Scholar 

  173. Stein RB, Charles D, Davis L, Jhamandas J, Mannard A, Nichols T (1975) Principles underlying new methods for chronic neural recording. Can J Neurol Sci 2(3):235–244

    CAS  PubMed  Google Scholar 

  174. Stoyanova II, van Wezel RJ, Rutten WL (2013) In vivo testing of a 3D bifurcating microchannel scaffold inducing separation of regenerating axon bundles in peripheral nerves. J Neural Eng 10(6):066018

    Article  PubMed  Google Scholar 

  175. Streit WJ, Xue QS, Prasad A, Sankar V, Knott E, Dyer A, Reynolds JR, Nishida T, Shaw GP, Sanchez JC (2012) Electrode failure: tissue, electrical, and material responses. IEEE Pulse 3(1):30–33

    Article  PubMed  Google Scholar 

  176. Strumwasser F (1958) Long-term recording from single neurons in brain of unrestrained mammals. Science 127(3296):469–470

    Article  CAS  PubMed  Google Scholar 

  177. Su HC, Lin CM, Yen SJ, Chen YC, Chen CH, Yeh SR, Fang W, Chen H, Yao DJ, Chang YC et al (2010) A cone-shaped 3D carbon nanotube probe for neural recording. Biosens Bioelectron 26(1):220–227

    Article  CAS  PubMed  Google Scholar 

  178. Sun Y, Akhremitchev B, Walker G (2004) Using the adhesive interaction between atomic force microscopy tips and polymer surfaces to measure the elastic modulus of compliant samples. Langmuir 20(14):5837–5845

    Article  CAS  PubMed  Google Scholar 

  179. Takeuchi S, Ziegler D, Yoshida Y, Mabuchi K (2005) Parylene flexible neural probes integrated with microfluidic channels. Lab Chip 5(5):519–523

    Article  CAS  PubMed  Google Scholar 

  180. Tijero M, Gabriel G, Caro J, Altuna A, Hernndez R, Villa R, Berganzo J, Blanco F, Salido R, Fernndez L (2009) SU-8 microprobe with microelectrodes for monitoring electrical impedance in living tissues. Biosens Bioelectron 24(8):2410–2416

    Article  CAS  PubMed  Google Scholar 

  181. Timko BP, Cohen-Karni T, Yu G, Qing Q, Tian B, Lieber CM (2009) Electrical recording from hearts with flexible nanowire device arrays. Nano Lett 9(2):914–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Toda H, Suzuki T, Sawahata H, Majima K, Kamitani Y, Hasegawa I (2011) Simultaneous recording of ECoG and intracortical neuronal activity using a flexible multichannel electrode-mesh in visual cortex. NeuroImage 54(1):203–212

    Article  PubMed  Google Scholar 

  183. Tseng WT, Yen CT, Tsai ML (2011) A bundled microwire array for long-term chronic single-unit recording in deep brain regions of behaving rats. J Neurosci Methods 201(2):368–376

    Article  PubMed  Google Scholar 

  184. Tyler D, Durand DM (2002) Flat interface nerve electrode and a method for use (US Patent 6,456,866)

  185. Tyler DJ, Durand DM (2003) Chronic response of the rat sciatic nerve to the flat interface nerve electrode. Ann Biomed Eng 31(6):633–642

    Article  PubMed  Google Scholar 

  186. Valentini R, Aebischer P (1993) The role of materials in designing nerve guidance channels and chronic neural interfaces. In: Dario P, Sandini G, Aebischer P (eds) Robots and biological systems: towards a new bionics? NATO ASI Series, vol 102. Springer, Berlin, Heidelberg, pp 625–636

  187. Vallbo A, Hagbarth K (1968) Activity from skin mechanoreceptors recorded percutaneously in awake human subjects. Exp Neurol 21(3):270–289

    Article  CAS  PubMed  Google Scholar 

  188. Vallejo-Giraldo C, Kelly A, Biggs MJ (2014) Biofunctionalisation of electrically conducting polymers. Drug Discov Today 19(1):88–94

    Article  CAS  PubMed  Google Scholar 

  189. Venkatraman S, Hendricks J, King ZA, Sereno AJ, Richardson-Burns S, Martin D, Carmena JM (2011) In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording. IEEE Trans Neural Syst Rehabil Eng 19(3):307–316

    Article  PubMed  Google Scholar 

  190. Viventi J, Kim DH, Moss JD, Kim YS, Blanco JA, Annetta N, Hicks A, Xiao J, Huang Y, Callans DJ et al (2010) A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci Transl Med 2(24):1–9

    Article  CAS  Google Scholar 

  191. Viventi J, Kim DH, Vigeland L, Frechette ES, Blanco JA, Kim YS, Avrin AE, Tiruvadi VR, Hwang SW, Vanleer AC, Wulsin DF, Davis K, Gelber CE, Palmer L, Van der Spiegel J, Wu J, Xiao J, Huang Y, Contreras D, Rogers JA, Litt B (2011) Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 14(12):1599–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ward M, Rajdev P, Ellison C, Irazoqui P (2009) Toward a comparison of microelectrodes for acute and chronic recordings. Brain Res 1282:183–200

    Article  CAS  PubMed  Google Scholar 

  193. Ward MP, Rajdev P, Ellison C, Irazoqui PP (2009) Toward a comparison of microelectrodes for acute and chronic recordings. Brain Res 1282:183–200

    Article  CAS  PubMed  Google Scholar 

  194. Ware T, Simon D, Arreaga-Salas DE, Reeder J, Rennaker R, Keefer EW, Voit W (2012) Fabrication of responsive, softening neural interfaces. Adv Funct Mater 22(16):3470–3479

    Article  CAS  Google Scholar 

  195. Ware T, Simon D, Rennaker RL, Voit W (2013) Smart polymers for neural interfaces. Polym Rev 53(1):108–129

    Article  CAS  Google Scholar 

  196. Wark H, Sharma R, Mathews K, Fernandez E, Yoo J, Christensen B, Tresco P, Rieth L, Solzbacher F, Normann R, Tathireddy P (2013) A new high-density (25 electrodes/mm\(^2\)) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. J Neural Eng 10(4):045003

    Article  CAS  PubMed  Google Scholar 

  197. Weiss PS (2013) President Obama announces the BRAIN initiative. ACS Nano 7(4):2873–2874

    Article  CAS  PubMed  Google Scholar 

  198. Wieringa P, Wiertz R, De Weerd E, Rutten W (2010) Bifurcating microchannels as a scaffold to induce separation of regenerating neurites. J Neural Eng 7(1):016001

    Article  CAS  Google Scholar 

  199. Wilks SJ, Richardson-Burns SM, Hendricks JL, Martin DC, Otto KJ (2009) Poly (3, 4-ethylenedioxythiophene) as a micro-neural interface material for electrostimulation. Front Neuroeng 2(7):1–8

    Google Scholar 

  200. Williams JC, Rennaker RL, Kipke DR (1999) Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex. Brain Res Protoc 4(3):303–313

    Article  CAS  Google Scholar 

  201. Williams JC, Hippensteel JA, Dilgen J, Shain W, Kipke DR (2007) Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J Neural Eng 4(4):410

    Article  PubMed  Google Scholar 

  202. Wise KD, Angell JB, Starr A (1970) An integrated-circuit approach to extracellular microelectrodes. IEEE Trans Biomed Eng 17(3):238–247

    Article  CAS  PubMed  Google Scholar 

  203. Wise KD, Sodagar AM, Ying Y, Gulari MN, Perlin GE, Najafi K (2008) Microelectrodes, microelectronics, and implantable neural microsystems. Proc IEEE 96(7):1184–1202

    Article  CAS  Google Scholar 

  204. Wise K, Angell J (1975) A low-capacitance multielectrode probe for use in extracellular neurophysiology. IEEE Trans Biomed Eng 22(3):212–219

    Article  CAS  PubMed  Google Scholar 

  205. Wolbarsht M, MacNichol E, Wagner H (1960) Glass insulated platinum microelectrode. Science 132(3436):1309–1310

    Article  CAS  PubMed  Google Scholar 

  206. Woldring S, Dirken M (1950) Spontaneous unit-activity in the superficial cortical layers. Acta Physiol Pharmacol Neerl 1(3):369–379

    CAS  PubMed  Google Scholar 

  207. Xu H, Holzwarth JM, Yan Y, Xu P, Zheng H, Yin Y, Li S, Ma PX (2014) Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials 35(1):225–235

    Article  CAS  PubMed  Google Scholar 

  208. Xu L, Gutbrod SR, Bonifas AP, Su Y, Sulkin MS, Lu N, Chung HJ, Jang KI, Liu Z, Ying M et al. (2014) 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat Commun 5(3329):1–10

    Google Scholar 

  209. Yeager J, Phillips D, Rector D, Bahr D (2008) Characterization of flexible ECoG electrode arrays for chronic recording in awake rats. J Neurosci Methods 173(2):279–285

    Article  PubMed  PubMed Central  Google Scholar 

  210. Yoo P, Durand D (2005) Selective recording of the canine hypoglossal nerve using a multicontact flat interface nerve electrode. IEEE Trans Biomed Eng 52(8):1461–1469

    Article  PubMed  Google Scholar 

  211. Yoshida K, Riso R (2004) Peripheral nerve recording electrodes and techniques. Neuroprosth Theory Pract 2:683–744

    Article  Google Scholar 

  212. Yu H, Xiong W, Zhang H, Wang W, Li Z (2014) A parylene self-locking cuff electrode for peripheral nerve stimulation and recording. J Microelectromech Syst 23(5):1023–1035

    Google Scholar 

  213. Zheng X, Zhang J, Chen T, Chen Z (2003) Longitudinally implanted intrafascicular electrodes for stimulating and recording fascicular physioelectrical signals in the sciatic nerve of rabbits. Microsurgery 23(3):268–273

    Article  PubMed  Google Scholar 

  214. Zhong C, Zhang Y, He W, Wei P, Lu Y, Zhu Y, Liu L, Wang L (2014) Multi-unit recording with iridium oxide modified stereotrodes in Drosophila melanogaster. J Neurosci Methods 222:218–229

    Article  CAS  PubMed  Google Scholar 

  215. Zhou HB, Li G, Sun XN, Zhu ZH, Jin QH, Zhao JL, Ren QS (2009) Integration of Au nanorods with flexible thin-film microelectrode arrays for improved neural interfaces. J Microelectromech Syst 18(1):88–96

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by National University of Singapore (NUS-SINAPSE) and National Research Foundation (NRF-CRP10-2012-01). The authors thank Dr. Ramsey Kraya, Research Associate, Dept of Biomedical Engineering, Johns Hopkins University, who has provided suggestions to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoop C. Patil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, A.C., Thakor, N.V. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording. Med Biol Eng Comput 54, 23–44 (2016). https://doi.org/10.1007/s11517-015-1430-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1430-4

Keywords

Navigation