Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Carbon nanotube coating improves neuronal recordings

Abstract

Implanting electrical devices in the nervous system to treat neural diseases is becoming very common. The success of these brain–machine interfaces depends on the electrodes that come into contact with the neural tissue. Here we show that conventional tungsten and stainless steel wire electrodes can be coated with carbon nanotubes using electrochemical techniques under ambient conditions. The carbon nanotube coating enhanced both recording and electrical stimulation of neurons in culture, rats and monkeys by decreasing the electrode impedance and increasing charge transfer. Carbon nanotube-coated electrodes are expected to improve current electrophysiological techniques and to facilitate the development of long-lasting brain–machine interface devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of CNT-coated MEA electrodes.
Figure 2: The functional effect of CNT coatings in vitro.
Figure 3: Characterization of sharpened metal electrodes coated with CNTs.
Figure 4: Stereotrode recordings from the rat motor cortex.
Figure 5: CNT-coated electrode recordings in the primate visual cortex.

References

  1. Hochberg, L. R. et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006).

    Article  CAS  Google Scholar 

  2. Chapin, J. K., Moxon, K. A., Markowitz, R. S. & Nicolelis, M. A. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nature Neurosci. 2, 664–670 (1999).

    Article  CAS  Google Scholar 

  3. Schwartz, A. B., Cui, X. T., Weber, D. J. & Moran, D. W. Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52, 205–220 (2006).

    Article  CAS  Google Scholar 

  4. Schwartz, A. B. Cortical neural prosthetics. Annu. Rev. Neurosci. 27, 487–507 (2004).

    Article  CAS  Google Scholar 

  5. Taylor, D. M., Tillery, S. I. & Schwartz, A. B. Direct cortical control of 3D neuroprosthetic devices. Science 296, 1829–1832 (2002).

    Article  CAS  Google Scholar 

  6. Hubel, D. H. Tungsten microelectrode for recording from single units. Science 125, 549–550 (1957).

    Article  CAS  Google Scholar 

  7. Loeb, G. E., Peck, R. A. & Martyniuk, J. Toward the ultimate metal microelectrode. J. Neurosci. Methods 63, 175–183 (1995).

    Article  CAS  Google Scholar 

  8. Campbell, P. K., Jones, K. E. & Normann, R. A. A 100 electrode intracortical array: structural variability. Biomed. Sci. Instrum. 26, 161–165 (1990).

    CAS  Google Scholar 

  9. Campbell, P. K., Jones, K. E., Huber, R. J., Horch, K. W. & Normann, R. A. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans. Biomed. Eng. 38, 758–768 (1991).

    Article  CAS  Google Scholar 

  10. Moxon, K. A., Leiser, S. C., Gerhardt, G. A., Barbee, K. A. & Chapin, J. K. Ceramic-based multisite electrode arrays for chronic single-neuron recording. IEEE Trans. Biomed. Eng. 51, 647–656 (2004).

    Article  Google Scholar 

  11. Pellinen, D., Moon, T., Vetter, R., Miriani, R. & Kipke, D. Multifunctional flexible parylene-based intracortical microelectrodes. Conf. Proc. IEEE Eng. Med. Biol. Soc. 5, 5272–5275 (2005).

    CAS  Google Scholar 

  12. Jensen, W., Yoshida, K. & Hofmann, U. G. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex. IEEE Trans. Biomed. Eng. 53, 934–940 (2006).

    Article  Google Scholar 

  13. Cheung, K. C., Renaud, P., Tanila, H. & Djupsund, K. Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosens. Bioelectron 22, 1783–1790 (2007).

    Article  CAS  Google Scholar 

  14. Robinson, D. The electrical properties of metal electrodes. Proc. IEEE 56, 1065–1071 (1968).

    Article  CAS  Google Scholar 

  15. Cogan, S. F., Guzelian, A. A., Agnew, W. F., Yuen, T. G. & McCreery, D. B. Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation. J. Neurosci. Methods 137, 141–150 (2004).

    Article  CAS  Google Scholar 

  16. Ijima, S. Helical microtubes of graphitic carbon. Nature 354, 56–58 (1991).

    Article  Google Scholar 

  17. Gross, G. W., Wen, W. Y. & Lin, J. W. Transparent indium-tin oxide electrode patterns for extracellular, multisite recording in neuronal cultures. J. Neurosci. Methods 15, 243–252 (1985).

    Article  CAS  Google Scholar 

  18. Yu, J., Grossiord, N., Koning, C. E. & Loos, J. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon (New York) 45, 618–623 (2007).

    CAS  Google Scholar 

  19. Galvan-Garcia, P. et al. Robust cell migration and neuronal growth on pristine carbon nanotube sheets and yarns. J. Biomater. Sci. Polym. Ed. 18, 1245–1261 (2007).

    Article  CAS  Google Scholar 

  20. Kim, S. K., Choi, H. Y., Lee, H. J. & Lee, H. Characteristics of electrodeposited single-walled carbon nanotube films. J. Nanosci. Nanotechnol. 6, 3614–3618 (2006).

    Article  CAS  Google Scholar 

  21. Cui, X. et al. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J. Biomed. Mater. Res. 56, 261–272 (2001).

    Article  CAS  Google Scholar 

  22. Cui, X., Wiler, J., Dzaman, M., Altschuler, R. A. & Martin, D. C. In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials 24, 777–787 (2003).

    Article  CAS  Google Scholar 

  23. George, P. M. et al. Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials 26, 3511–3519 (2005).

    Article  CAS  Google Scholar 

  24. Ludwig, K. A., Uram, J. D., Yang, J., Martin, D. C. & Kipke, D. R. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J. Neural Eng. 3, 59–70 (2006).

    Article  Google Scholar 

  25. Hughes, M., Chen, G. Z., Shaffer, M. S. P., Fray, D. J. & Windle, A. H. Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem. Mater. 14, 1610–1613 (2002).

    Article  CAS  Google Scholar 

  26. Nguyen-Vu, T. D. et al. Vertically aligned carbon nanofibre arrays: an advance toward electrical–neural interfaces. Small 2, 89–94 (2006).

    Article  CAS  Google Scholar 

  27. Schwartz, A. B. Useful signals from motor cortex. J. Physiol. 579, 581–601 (2007).

    Article  CAS  Google Scholar 

  28. Desimone, R. & Schein, S. J. Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. J. Neurophysiol. 57, 835–868 (1987).

    Article  CAS  Google Scholar 

  29. Schein, S. J. & Desimone, R. Spectral properties of V4 neurons in the macaque. J. Neurosci. 10, 3369–3389 (1990).

    Article  CAS  Google Scholar 

  30. Luck, S. J., Chelazzi, L., Hillyard, S. A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  Google Scholar 

  31. Chelazzi, L., Miller, E. K., Duncan, J. & Desimone, R. Responses of neurons in macaque area V4 during memory-guided visual search. Cereb. Cortex 11, 761–772 (2001).

    Article  CAS  Google Scholar 

  32. Ungerleider, L. G., Galkin, T. W., Desimone, R. & Gattass, R. Cortical connections of area V4 in the macaque. Cereb. Cortex 18, 477–499 (2008).

    Article  Google Scholar 

  33. Lovat, V. et al. Carbon nanotube substrates boost neuronal electrical signalling. Nano Lett. 5, 1107–1110 (2005).

    Article  CAS  Google Scholar 

  34. Mazzatenta, A. et al. Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J. Neurosci. 27, 6931–6936 (2007).

    Article  CAS  Google Scholar 

  35. Liopo, A. V., Stewart, M. P., Hudson, J., Tour, J. M. & Pappas, T. C. Biocompatibility of native and functionalized single-walled carbon nanotubes for neuronal interface. J. Nanosci. Nanotechnol. 6, 1365–1374 (2006).

    Article  CAS  Google Scholar 

  36. Wang, K., Fishman, H. A., Dai, H. & Harris, J. S. Neural stimulation with a carbon nanotube microelectrode array. Nano Lett. 6, 2043–2048 (2006).

    Article  CAS  Google Scholar 

  37. Gabay, T. et al. Electro-chemical and biological propertiesof carbon nanotube based multi-electrode arrays. Nanotechnology 18, 035201 (2007).

    Article  Google Scholar 

  38. Yu, Z. et al. Vertically aligned carbon nanofibre arrays record electrophysiological signals from hippocampal slices. Nano Lett. 7, 2188–2195 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank L. Howard and M. Gosney of the SMU Department of Electrical Engineering for providing the custom designed MOSFET pre-amplifiers used in electrical stimulation experiments. We wish to thank H. Wiggins and C. Patten of Plexon for their rapid response to requests for electrophysiological equipment modifications.

Author information

Authors and Affiliations

Authors

Contributions

E.W.K. conceived, designed and performed experiments, and wrote paper. B.R.B. and M.I.R. assisted with rodent experiments. A.F.R. provided monkey data. E.W.K. and G.W.G. developed coating techniques.

Corresponding author

Correspondence to Edward W. Keefer.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keefer, E., Botterman, B., Romero, M. et al. Carbon nanotube coating improves neuronal recordings. Nature Nanotech 3, 434–439 (2008). https://doi.org/10.1038/nnano.2008.174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing