Skip to main content
Log in

Constitutive modelling of the elastic–plastic, viscoplastic and damage behaviour of hard porous rocks within the unified theory of inelastic flow

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This article presents a constitutive model for the elastic–plastic, viscoplastic and damage behaviour of hard porous rocks. The main hypotheses of the model are based on a large set of experimental data which are also presented in the paper. This constitutive model is of the over-stress type and is formulated within the unified theory of inelastic flow. An energy-based failure surface was considered to describe both short- and long-term behaviours within the same formulation. The inelastic yield surface is of static nature while the failure and damage surfaces are of dynamic nature. The kinetic law is written in terms of internal state variables that allow the description of how the frictional and the cohesive internal strengths of the material evolves. The reversible inelastic behaviour is also modelled using the “under-stress” concept, and considering that, it depends explicitly on the locked energy during the inelastic flow. In addition, this model is adapted to the porous nature of rocks such as iron ore that exhibit strong volumetric deformations and mean stress dependence. A large fraction of the volumetric straining is explained by damage mechanisms that also allow the accelerated creep to be modelled. Model parameters can easily be identified in the laboratory with commonly used mechanical tests. The constitutive model was implemented in a numerical code, and some qualitative simulations and comparisons with experimental curves showed the suitability of the model to reproduce both short- and long-term behaviours of porous rocks similar to iron ore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

H(x):

Heaviside function

<x> = ½ (x + |x|):

Macaulay brackets

t :

Time

x in :

Inelastic component

x vp :

Viscoplastic (time-dependent) component

\( \underline{\underline{{\dot{\varepsilon }}}} = \underline{\underline{{\dot{\varepsilon }}}}^{\text{e}} + \underline{\underline{{\dot{\varepsilon }}}}^{\text{in}} = \underline{\underline{{\dot{\varepsilon }}}}^{\text{e}} + \underline{\underline{{\dot{\varepsilon }}}}^{\text{p}} + \underline{\underline{{\dot{\varepsilon }}}}^{\text{vp}} \) :

Strain partition

\( \dot{\varepsilon }_{\text{v}}^{\text{in}} = \dot{\varepsilon }_{11}^{\text{in}} + \dot{\varepsilon }_{22}^{\text{in}} + \dot{\varepsilon }_{33}^{\text{in}} \) :

Inelastic volumetric strain

\( \beta = \dot{\varepsilon }_{\text{v}} /\dot{\gamma } \) :

Dilatancy coefficient

\( \sigma_{\text{eq}} = \sqrt {\frac{3}{2}\underline{\underline{s}} :\underline{\underline{s}} } \) :

Equivalent (Von Mises) deviatoric stress

\( \underline{\underline{s}} \) :

Deviatoric stress tensor

K :

Elastic bulk modulus

A :

Scaling parameter for kinetic law \( \dot{\gamma }^{\text{in}} \)

σ 0 :

Normalisation parameter (=1 MPa)

Y o :

Initial value of Y

Y r :

Slope of peak surface of plasticity

Y 2 :

Scaling parameter of Y

η o :

Initial value of η

η 1 :

Scaling parameter of η

w in,tot :

Total inelastic work

\( w_{{{\text{vol}}}}^{\text{in}} \) :

Volumetric inelastic work

w 1 :

Scaling parameter of \( w_{{{\text{d }}\hbox{max}}}^{\text{in}} \)

\( \underline{\underline{{\dot{\varepsilon }}}}^{\text{in*}} \) :

“Standard” inelastic* strain

\( \underline{\underline{{\dot{\varepsilon }}}}^{\text{b}} \) :

“Backward” (reverse) inelastic strain

\( \dot{\gamma }^{\text{f}} \) :

“Forward” inelastic distortion

\( Y^{*} \) :

“Standard” frictional strength

Y f :

“Forward” frictional strength

\( (\gamma^{{{\text{in}}*}} )_{{{ \hbox{max} }}} \) :

Maximal distortion

\( w_{{{\text{d}}\hbox{max}}}^{{{\text{in}}*}} \) :

Deviatoric “standard” inelastic* work at failure

\( w^{{{\text{in}}*,{\text{lock}}}} \) :

Locked “standard” inelastic* energy

\( w_{\hbox{max}}^{{{\text{b,lock}}}} \) :

Locked energy available for “backward” strain

w f,lock :

Locked “forward” energy

C :

Scaling parameter for kinetic law \( \dot{\gamma }^{\text{f}} \)

\( w^{{{\text{in}}*,{\text{diss}}}} \) :

Dissipated “standard” inelastic* energy

D :

Isotropic damage variable

\( w_{{{\text{d}}\,{\text{crit}}}}^{{{\text{in}}*}} \) :

Deviatoric inelastic energy at damage onset

ξ :

Scaling parameter of damage function

:

Fourth-order elasto-damaged stiffness tensor

ϕ d :

Damage porosity

ϕ 2 :

Scaling parameter for damage porosity

\( \tilde{H} \) :

Conjugate of the Heaviside function

\( \dot{x} \) :

Rate of x

x e :

Elastic (time-independent) component

x p :

Plastic (time-independent) component

\( \underline{\underline{{\dot{\varepsilon }}}} \) :

Strain tensor

\( \dot{\gamma }^{\text{in}} = \sqrt {\frac{2}{3}\underline{\underline{{\dot{e}}}}^{\text{in}} :\underline{\underline{{\dot{e}}}}^{\text{in}} } \) :

Inelastic distortion

\( \underline{\underline{{\dot{e}}}}^{\text{in}} = \underline{\underline{{\dot{\varepsilon }}}}^{\text{in}} - \frac{1}{3}{\text{tr}}\,\underline{\underline{{\dot{\varepsilon }}}}^{\text{in}} \) :

Deviatoric strain tensor

\( \underline{\underline{\sigma }} \) :

Cauchy stress tensor

\( \sigma_{\text{m}} = \frac{1}{3}{\text{tr }}\underline{\underline{\sigma }} \) :

Mean stress

G :

Elastic shear modulus

F d :

Deviatoric yield function

n :

Scaling parameter for kinetic law \( \dot{\gamma }^{\text{in}} \)

Y :

Frictional strength (scalar state variable)

Y m :

Peak value of Y

Y 1 :

Scaling parameter of Y

η :

Cohesive strength (scalar state variable)

η m :

Maximal value of η

(γ in)max :

Maximal inelastic distortion

\( w_{\text{d}}^{\text{in}} \) :

Deviatoric inelastic work

\( w_{{{\text{d max}}}}^{\text{in}} \) :

Deviatoric inelastic work at failure

w 2 :

Scaling parameter of \( w_{{{\text{d }}\hbox{max}}}^{\text{in}} \)

\( \underline{\underline{{\dot{\varepsilon }}}}^{\text{f}} \) :

“Forward” inelastic strain

\( \dot{\gamma }^{{{\text{in}}*}} \) :

“Standard” inelastic* distortion

\( \dot{\gamma }^{\text{b}} \) :

“Backward” (reverse) inelastic distortion

\( \eta^{*} \) :

“Standard” cohesive strength

\( \eta^{\text{f}} \) :

“Forward” cohesive strength

\( w_{\text{d}}^{\text{in*}} \) :

Deviatoric “standard” inelastic* work

w in,lock :

Locked inelastic energy

x :

Recoverable fraction of \( w^{{{\text{in*,lock}}}} \)

w b,lock :

Locked “backward” energy

B :

Scaling parameter for kinetic law \( \dot{\gamma }^{\text{b}} \)

w in,diss :

Dissipated inelastic energy

\( w^{{{\text{in*,tot}}}} \) :

Total “standard” inelastic* energy

\( w_{\text{vol}}^{\text{in*}} \) :

Volumetric “standard” inelastic* work

F dam :

Energy-based damage function

\( \tilde{F}_{\text{d}} \) :

Deviatoric yield function with damage

:

Fourth-order elasticity stiffness tensor

ϕ 1 :

Scaling parameter for damage porosity

References

  1. Aktaa J, Schinke B (1997) Unified modelling of time dependent damage taking into account an explicit dependency on backstress. Int J Fatigue 19(3):195–200

    Article  Google Scholar 

  2. Arndt M, Griebel M, Novak V, Roubicek T, Sittner P (2006) Martensitic transformation in NiMnGa single crystals: numerical simulation and experiments. Int J Plast. 22:1943–1961

    Article  MATH  Google Scholar 

  3. Atkinson BK (1982) Subcritical crack propagation in rocks: theory, experimental results and applications. J Struct Geol 4:41–56

    Article  Google Scholar 

  4. Atkinson BK (1984) Subcritical crack growth in geological materials. J Geophys Res 89(B6):4077–4114

    Article  Google Scholar 

  5. Atkinson BK, Meredith PG (1987) The theory of subcritical crack growth with applications to minerals and rocks. Fract Mech Rock. Academic Press, London, pp 111–166

    Chapter  Google Scholar 

  6. Aubertin M, Gill DE, Ladanyi B (1991) A unified viscoplastic model for the inelastic flow of alkali halides. Mech Mater 11:63–82

    Article  Google Scholar 

  7. Aubertin M, Gill DE, Ladanyi B (1993) Modeling the transcient inelastic flow of rocksalt. In: Seventh symposium on salt. Elsevier Science Publishers B.V., Amsterdam, vol 1, pp 93–104

  8. Aubertin M, Yahya OML, Julien M (1999) Modeling mixed hardening of alkali halides with a modified version of an internal state variables model. Int J Plast. 15:1067–1088

    Article  MATH  Google Scholar 

  9. Auricchio F, Reali A, Stefanelli U (2007) A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity. Int J Plast 23:207–226

    Article  MATH  Google Scholar 

  10. Bailey RW (1926) Note on the softening of strain hardening metals and its relation to creep. J Inst Metals 35:27–40

    Google Scholar 

  11. Barber DJ, Wenk H-R (1979) On geological aspects of calcite microstructure. Tectonophysics 54:45–60. doi:10.1016/0040-1951(79)90111-2

    Article  Google Scholar 

  12. Baud P, Meredith PG (1997) Damage accumulation during triaxial creep of Darley Dale sandstone from pore volumometry and acoustic emission. Int J Rock Mech Min Sci 34(3–4):371

    Article  Google Scholar 

  13. Baud P, Schubnel A, Wong T-F (2000) Dilatancy, compaction, and failure mode in Solnhofen limestone. J Geophys Res 105(B8):19289–19303

    Article  Google Scholar 

  14. Becker M, Hackenberg H-P (2011) A constitutive model for rate dependent and rate independent inelasticity. Application to IN718. Int J Plast 27(4):596–619

    Article  MATH  Google Scholar 

  15. Bieniawski ZT (1967) Mechanism of brittle fracture of rock, parts I, II, III. Int J Rock Mech Min Sci 4:395–430

    Article  Google Scholar 

  16. Blum W (2001) Creep of crystalline materials: experimental basis, mechanisms and models. Mater Sci Eng A319–321, 8–15

  17. Boyko VS, Garber RI, Kossevich AM (1994) Reversible crystal plasticity. American Institute of Physics, New York

    Google Scholar 

  18. Briottet L, Klöcker H, Montheillet F (1998) Damage in a viscoplastic material—part II. Overall behaviour. Int J Plast 14(6):453–471

    Article  MATH  Google Scholar 

  19. Cadek J (1987) The back stress concept in power creep law of metals: a review. Mater Sci Eng 9:79–92

    Article  Google Scholar 

  20. Cai W, Bulatov VV, Justo JF, Argon AS, Yip S (2000) Intrinsic mobility of a dissociated dislocation in silicon. Phys Rev Lett 8(15):3346

    Article  Google Scholar 

  21. Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive theories. Int J Plast 24(10):1642–1693

    Article  MATH  Google Scholar 

  22. Charlez PA (1991) Rock mechanics: theoretical fundamentals, vol 1, Editions. Technip

  23. Chen L, Shao JF, Huang HW (2010) Coupled elastoplastic damage modeling of anisotropic rocks. Comput Geotech 37:187–194

    Article  Google Scholar 

  24. Cheng GJ, Shehadeh MA (2006) Multiscale dislocation dynamics analyses of laser shock peening in silicon single crystals. Int J Plast 22:2171–2194

    Article  MATH  Google Scholar 

  25. Cicekli U, Voyiadjis GZ, Abu Al-Rub RK (2007) A plasticity and anisotropic damage model for plain concrete. Int J Plast 23(10):1874–1900

    Article  MATH  Google Scholar 

  26. Cocks ACF (1989) Inelastic deformation of porous materials. J Mech Phys Solids 37:693–715

    Article  MATH  Google Scholar 

  27. Colak OU (2005) Modeling deformation behavior of polymers with viscoplasticity theory based on overstress. Int J Plast 21(1):145–160

    Article  MATH  Google Scholar 

  28. Cristescu ND (1993) A general constitutive equation for transient and stationary creep of rock salt. Int J Rock Mech Min Sci Geomech Abstr 30(2):125–140

    Article  Google Scholar 

  29. Croizé D, Renard F, Bjørlykke K, Dysthe DK (2010) Experimental calcite dissolution under stress: evolution of grain contact microstructure during pressure solution creep. J Geophys Res B Solid Earth 115(9):B09207

    Google Scholar 

  30. Dagallier G, Grgic D, Homand F (2002) Mineralogical and microtextural characterisation of the anthropic-origin ageing of iron ore in Lorraine (France). CRAS 334:455–462

    Google Scholar 

  31. De Borst R (2002) Fracture in quasi-brittle materials: a review of continuum damage-based approaches. Eng Fract Mech 69(2):95–112

    Article  Google Scholar 

  32. Duvaut G, Lions LJ (1962) Inequalities in mechanics and physics. Springer, Berlin

    Google Scholar 

  33. Eslami J, Grgic D, Hoxha D (2010) Estimation of the damage of a porous limestone from continuous (P- and S-) wave velocity measurements under uniaxial loading and different hydrous conditions. Geophys J Int 183:1362–1375

    Article  Google Scholar 

  34. Faruque MO, Zaman M, Hossain MI (1996) Creep constitutive modeling of an aluminum alloy under multiaxial and cyclic loading. Int J Plast 12(6):761–780

    Article  MATH  Google Scholar 

  35. Fonseka GM, Murrell SAF, Barnes P (1985) Scanning electron microscope and acoustic emission studies of crack development in rock. Int J Rock Mech Min Sci 22:273–289

    Article  Google Scholar 

  36. Freed AD, Walker KP (1993) Viscoplasticity with creep and plasticity bounds. Int J Plast 9:213–242

    Article  MATH  Google Scholar 

  37. Gerberich WW, Mook WM, Cordill MJ, Barry Carter C, Perrey CR, Heberlein JV, Girshick SL (2005) Reverse plasticity in single crystal silicon nanospheres. Int J Plast 21(12):2391–2405

    Article  MATH  Google Scholar 

  38. Grgic D (2001) Modelling of the short and long-term behavior of rocks of Lorraine (France) ferriferous formation. Ph.D. Thesis, INPL, Nancy (in French)

  39. Grgic D (2011) The influence of CO2 on physico-chemical and mechanical properties of an oolithic limestone. J Geophys Res B Solid Earth 116:B07201. doi:10.1029/2010JB008176

    Article  Google Scholar 

  40. Grgic D, Amitrano D (2009) Creep of a porous rock and associated acoustic emission under different hydrous conditions. J Geophys Res 114:B10201

    Article  Google Scholar 

  41. Grgic D, Homand F, Hoxha D (2003) A short- and long-term rheological model to understand the collapses of iron mines in Lorraine, France. Comput Geotech 30:557–570

    Article  Google Scholar 

  42. Grgic D, Giot R, Homand F, Giraud A (2005) Effect of suction on the mechanical behaviour of iron ore rock. Int J Numer Anal Methods Geomech 29:789–827

    Article  MATH  Google Scholar 

  43. Grgic D, Homand F, Giraud A (2006) Modelling of the drying and flooding of underground iron mines in Lorraine (France). Int J Rock Mech Min Sci 43:388–407

    Article  Google Scholar 

  44. Guéry AA-C, Cormery F, Su K, Shao JF, Kondo D (2008) A micromechanical model for the elasto-viscoplastic and damage behavior of a cohesive geomaterial. Phys Chem Earth 33(Suppl 1):S416–S421

    Article  Google Scholar 

  45. Guéry AA-C, Cormery F, Su K, Shao JF, Kondo D (2008) A micromechanical model of elastoplastic and damage behavior of a cohesive geomaterial. Int J Solids Struct 45:1406–1429

    Article  MATH  Google Scholar 

  46. Guéry AA-C, Cormery F, Shao JF, Kondo D (2009) A multiscale modeling of damage and time-dependent behavior of cohesive rocks. Int J Numer Anal Methods Geomech 33(5):567–589

    Article  MATH  Google Scholar 

  47. Guessous Z, Gill DE, Ladanyi B (1987) Effect of simulated sampling disturbance on creep behaviour of rock salt. Rock Mech Rock Eng 20:261–275

    Article  Google Scholar 

  48. Hadley K (1976) Comparison of calculated and observed crack densities and seismic velocities in Westerley granite. J Geophys Res 81:3484–3487

    Article  Google Scholar 

  49. Hashiguchi K, Okayasu T (2000) Time-dependent elastoplastic constitutive equation based on the subloading surface model and its application to soils. Soils Found 40(3):21–36

    Google Scholar 

  50. Hashiguchi K, Okayasu T, Saitoh K (2005) Rate-dependant inelastic constitutive equation: the extension of elastoplasticity. Int J Plast 21:463–491

    Article  MATH  Google Scholar 

  51. Haupt P, Kersten Th (2003) On the modelling of anisotropic material behaviour in viscoplasticity. Int J Plast 19:1885–1915

    Article  MATH  Google Scholar 

  52. Heap MJ, Baud P, Meredith PG, Bell AF, Main IG (2009) Time dependent brittle creep in Darley Dale sandstone. J Geophys Res 114:B07203. doi:10.1029/2008JB006212

    Google Scholar 

  53. Heap MJ, Baud P, Meredith PG (2009) Influence of temperature on brittle creep in sandstones. Geophys Res Lett 36(19):L19305. doi:10.1029/2009GL039373

    Article  Google Scholar 

  54. Heeres OM, Suiker ASJ, de Borst R (2002) A comparison between the Perzyna viscoplastic modal and the Consistency viscoplastic model. Eur J Mech A/Solids 21:1–12

    Article  MATH  Google Scholar 

  55. Hickman RJ, Gutierrez MS (2007) Formulation of a three-dimensional rate-dependent constitutive model for chalk and porous rocks. Int J Numer Anal Methods Geomech 31(4):583–605

    Article  MATH  Google Scholar 

  56. Holt R, Furre A, Horsrud P (1997) Stress dependent wave velocities in sedimentary rock cores: Why and why not? Int J Rock Mech Min Sci Geomech Abstr 34(3–4):399

    Article  Google Scholar 

  57. Horii H, Nemat-Nasser (1983) Overall moduli of solids with microcracks: load-induced anisotropy. J Mech Phys Solids 31(2):151–171

    Article  Google Scholar 

  58. Hoxha D, Giraud A, Homand F (2005) Modelling long-term behaviour of a natural gypsum rock. Mech Mater 37:1223–1241

    Article  Google Scholar 

  59. Hu DW, Zhu QZ, Zhou H, Shao JF (2010) A discrete approach for anisotropic plasticity and damage in semi-brittle rocks. Comput Geotech 37:658–666

    Article  Google Scholar 

  60. Hunshe U, Hampel A (1999) Rock salt—the mechanical properties of the host rock material for a radioactive waste repository. Eng Geol 52:271–291

    Article  Google Scholar 

  61. Itasca Consulting Group Inc. (1998) Flac Lagrangian analysis of continua in 2 dimensions. User’s manual

  62. Jeong H-S, Kang S-S, Obara Y (2007) Influence of surrounding environments and strain rates on the strength of rocks subjected to uniaxial compression. Int J Rock Mech Min Sci 44:321–331

    Article  Google Scholar 

  63. Jiang T, Shao JF, Xu WY (2011) A micromechanical analysis of elastoplastic behavior of porous materials. Mech Res Commun 38:437–442

    Article  MATH  Google Scholar 

  64. Jin J, Cristescu ND (1998) An elastic/viscoplastic model for transient creep of rock salt. Int J Plast 14(1–3):85–107

    Article  MATH  Google Scholar 

  65. Ju JW (1989) On energy based coupled elastoplastic damage theories: constitutive modeling and computational aspects. Int J Solids Struct 25(7):803–833

    Article  MATH  Google Scholar 

  66. Kafka V, Vokoun D (2005) On backstresses, overstresses, and internal stresses represented on the mesoscale. Int J Plast 21(8):1461–1480

    Article  MATH  Google Scholar 

  67. Kowalewski ZL, Hayhurst DR, Dyson BF (1994) Mechanisms-based creep constitutive equations for an aluminium alloy. J Strain Anal 29:309–316

    Article  Google Scholar 

  68. Kranz R (1983) Microcracks in rocks: a review. Tectonophysics 100(1–3):449–480

    Article  Google Scholar 

  69. Kruch S, Chaboche J-L (2011) Multi-scale analysis in elasto-viscoplasticity coupled with damage. Int J Plast (in press), corrected proof. Available online 14 April 2011, ISSN 0749-6419. doi:10.1016/j.ijplas.2011.03.007

  70. Lemaitre J (1992) A course on damage mechanics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  71. Lemaitre J, Chaboche J-L (1990) Mechanics of solids materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  72. Lin QX, Tham LG, Yeung MR, Lee PKK (2004) Failure of granite under constant loading. Int J Rock Mech Min Sci 41(Suppl 1):1A09, 1–6

  73. Lissenden CJ, Doraiswamy D, Arnold SM (2007) Experimental investigation of cyclic and time-dependent deformation of titanium alloy at elevated temperature. Int J Plast 23(1):1–24

    Article  MATH  Google Scholar 

  74. Liu J, Walter JM, Weber K (2002) Fluid-enhanced low-temperature plasticity of calcite marble: microstructures and mechanisms. Geology 30(9):787–790

    Article  Google Scholar 

  75. Lockner D (1993) Room temperature creep in saturated granite. J Geophys Res 98:475–487

    Article  Google Scholar 

  76. Manonukul A, Dunne FPE, Knowles D, Williams S (2005) Multiaxial creep and cyclic plasticity in nickel-base superalloy C263. Int J Plast 21(1):1–20

    Article  MATH  Google Scholar 

  77. Maranini E, Yamaguchi T (2001) A non-associated viscoplastic model for the behaviour of granite in triaxial compression. Mech Mater 33:283–293

    Article  Google Scholar 

  78. Marin EB, McDowell L (1996) Associative versus non-associative porous visco-plasticity based on internal state variable concepts. Int J Plast 12(5):629–669

    Article  MATH  Google Scholar 

  79. Martin CD, Chandler NA (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci 31:643–659

    Article  Google Scholar 

  80. McDowell DL (1992) A nonlinear kinematic hardening theory for cyclic thermoplasticity and thermoviscoplasticity. Int J Plast 8:695–728

    Article  MATH  Google Scholar 

  81. McNee KR, Greenwood GW, Jones H (2002) On the mechanisms of dynamic recovery. Scripta Mater 47:619–623

    Article  Google Scholar 

  82. Meredith PG, Atkinson BK (1983) Stress corrosion and acoustic emission during tensile crack propagation in Whin Sill dolerite and other basic rocks. Geophys J Astr Soc 75:1–21

    Article  Google Scholar 

  83. Miguel M-C, Vesignani A, Zapperi S, Weiss J, Grasso JR (2001) Intermittent dislocation flow in viscoplastic deformation. Nature 410:667–671

    Article  Google Scholar 

  84. Mohamad-Hussein A, Shao J-F (2007) Modelling of elastoplastic behaviour with non-local damage in concrete under compression. Comput Struct 85(23–24):1757–1768

    Article  Google Scholar 

  85. Nara Y, Takada M, Igarashi T, Hiroyoshi N, Kaneko K (2007) Subcritical crack growth in rocks in an aqueous environment. Explor Geophys 40(1):163–171

    Article  Google Scholar 

  86. Nemat-Nasser S, Obata M (1988) Microcrack model of dilatancy in brittle materials. J Appl Mech 55:24–35

    Article  Google Scholar 

  87. Nes E, Marthinsen K, Brechet Y (2002) On the mechanisms of dynamic recovery. Scripta Mater 47:607–611

    Article  Google Scholar 

  88. Ohashi Y, Kawai M, Momose T (1986) Effects of prior creep on subsequent plasticity of type 316 stainless steel at elevated temperature. J Eng Mater Technol, ASME 108:69–74

    Article  Google Scholar 

  89. Ohnaka M (1983) Acoustic emission during creep of brittle rock. Int J Rock Mech Min Sci 20:121–134

    Article  Google Scholar 

  90. Ohnaka M, Mogi K (1982) Frequency characteristics of acoustic emission in rocks under uniaxial compression and its relation to the fracturing process to failure. J Geophys Res 87:3873–3884

    Article  Google Scholar 

  91. Onat ET (1981) Representation of inelastic behaviour. In: Proceedings of international conference on creep and fractures in engineering materials and structures. Pineridge Press, Swansea, p 587

  92. Orlova A (1991) On the relation between dislocation structure and internal stress measured in pure metals and single alloys in high temperature creep. Acta Metall Mater 39:2805–2813

    Article  Google Scholar 

  93. Orowan E (1946) The creep of metals. J West Scotl Iron Steel Inst 54:45–68

    Google Scholar 

  94. Perzyna P (1963) The constitutive equations for rate sensitive plastic materials. Q Appl Math 20:321–332

    MathSciNet  MATH  Google Scholar 

  95. Perzyna P (1966) Fundamental problems in viscoplasticity. Adv Appl Mech 9(2):244–368

  96. Perzyna P (1971) Thermodynamic theory of viscoplasticity. Adv Appl Mech 11:313–354

  97. Plechac P, Roubicek T (2002) Visco-elasto-plastic model for martensitic phase transformation in shape-memory alloys. Math Methods Appl Sci 25:1281–1298

    Article  MathSciNet  MATH  Google Scholar 

  98. Poirier J-P (1995) Plastic rheology of crystals. In: Arhens TJ (ed) Mineral physics and crystallography. A handbook of physical constants. American Geophysical Union, USA

    Google Scholar 

  99. Pouya A (2000) Micro-macro approach for the rock salt behaviour. Eur J Mech A/Solids 19(16):1015–1028

    Article  MATH  Google Scholar 

  100. Rajagopal KR, Roubicek T (2003) On the effect of dissipation in shape-memory alloys. Nonlinear Anal Real World Appl 4:581–597

    Article  MathSciNet  MATH  Google Scholar 

  101. Rehbinder PA, Lichtman V (1957). Effect of surface active media on strain and rupture in solids. In: Proceedings of international congress of surface activity, II, III, pp 563–580

  102. Renner J, Evans B, Siddiqi G (2002) Dislocation creep of calcite. J Geophys Res 107(B12):2364. doi:10.1029/2001JB001680

    Article  Google Scholar 

  103. Ristinmaa M, Ottosen NS (2000) Consequences of dynamic yield surface in viscoplasticity. Int J Solids Struct 37:4601–4622

    Article  MATH  Google Scholar 

  104. Royne A, Bisschop J, Dysthe DK (2011) Experimental investigation of surface energy and subcritical crack growth in calcite. J Geophys Res. doi:10.1029/2010JB008033

  105. Rutter EH (1972) The influence of interstitial water on the rheological behaviour of calcite rocks. Tectonophysics 14:13–33. doi:10.1016/0040-1951(72)90003-0

    Article  Google Scholar 

  106. Rutter EH (1972) On the creep testing of rocks at constant stress and constant force. Int J Rock Mech Min Sci 9:191–195

    Article  Google Scholar 

  107. Rutter EH (1974) The influence of temperature, strain rate and interstitial water in the experimental deformation of calcite rocks. Tectonophysics 22:311–334

    Article  Google Scholar 

  108. Schapery RA (1999) Nonlinear viscoelastic and viscoplastic constitutive equations with growing damage. Int J Fract 97:33–66

    Article  Google Scholar 

  109. Scholz CH (1968) Mechanism of creep in brittle rock. J Geophys Res 73(10):3295–3302. doi:10.1029/JB073i010p03295

    Article  Google Scholar 

  110. Scholz CH (1972) Static fatigue of quartz. J Geophys Res 77(11):2104–2114. doi:10.1029/JB077i011p02104

    Article  Google Scholar 

  111. Schubnel A, Fortin J, Burlini L, Gueguen Y (2005) Damage and recovery of calcite rocks deformed in the cataclastic regime. Geol Soc Spec Pub 245:203–221

    Article  Google Scholar 

  112. Sedláček R, Blum W (1998) Internal stress in dislocation subgrain structures. Comput Mater Sci 13:148–153

    Article  Google Scholar 

  113. Sgaoula J, Aubertin M, Gill DE (1995) Using internal state variables for modelling the viscoplastic behaviour of rocksalt in the semi-brittle regime. In: Daemen JJK, Schultz RA (eds) Rock mechanics. Balkema, Rotterdam. ISBN 90 5410 552 6, pp 749–754

  114. Shao JF, Zhu QZ, Su K (2003) Modeling of creep in rock materials in terms of material degradation. Comput Geotech 30:549–555

    Article  Google Scholar 

  115. Shao JF, Jia Y, Kondo D, Chiarelli AS (2006) A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions. Mech Mater 38:218–232

    Article  Google Scholar 

  116. Shao JF, Chau KT, Feng XT (2006) Modeling of anisotropic damage and creep deformation in brittle rocks. Int J Rock Mech Min Sci 43:582–592

    Article  Google Scholar 

  117. Shenoy MM, McDowell DL, Neu RW (2006) Transversely isotropic viscoplasticity model for a directionally solidified Ni-base superalloy. Int J Plast 22(12):2301–2326

    Article  MATH  Google Scholar 

  118. Suvarova JV, Ohlson NG, Alexeeva SI (2003) An approach to the description of time dependent materials. Mater Des 24:293–297

    Article  Google Scholar 

  119. Swearengen JC, Holbrook JH (1985) Internal variable models for rate-dependent plasticity: Analysis of theory and experiment. Res. Mechanica 13:93

    Google Scholar 

  120. Tapponier P, Brace WF (1976) Development of stress induced microcracks in Westerley granite. Int J Rock Mech Min Sci 13:103–112

    Article  Google Scholar 

  121. Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17:389–407

    Article  Google Scholar 

  122. Vajdova V, Baud P, Wong T-F (2004) Compaction, dilatancy, and failure in porous carbonate rocks. J Geophys Res 109(5): B05204 1-16

  123. Vajdova V, Zhu W, Natalie Chen T-M, Wong T-F (2010) Micromechanics of brittle faulting and cataclastic flow in Tavel limestone. J Struct Geol 32(8):1158–1169

    Article  Google Scholar 

  124. Voyiadjis GZ, Abu Al-Rub RK (2003) Thermodynamical framework for coupling of non-local viscoplasticity and non-local anisotropy viscodamage for dynamic localization problems using gradient theory. Int J Plast 19:2121–2147

    Article  MATH  Google Scholar 

  125. Voyiadjis GZ, Huang W (1996) Modelling of single crystal plasticity with backstress evolution. Eur J Mech A/Solids 15(4):553–573

    MATH  Google Scholar 

  126. Voyiadjis GZ, Taqieddin ZN, Kattan PI (2008) Anisotropic damage—plasticity model for concrete. Int J Plast 24:1946–1965

    Article  MATH  Google Scholar 

  127. Wang W (1997) Stationary and propagative instabilities in metals—a computational point of view. Ph.D., TU Delft, Netherlands

  128. Waza T, Kurita K, Mizutani H (1980) The effect of water on the subcritical crack growth in silicate rocks. Tectonophysics 67:25–34

    Article  Google Scholar 

  129. Weng MC, Tsai LS, Hsieh YM, Jeng FS (2010) An associated elastic–viscoplastic constitutive model for sandstone involving shear-induced volumetric deformation. Int J Rock Mech Min Sci 47(8):1263–1273

    Article  Google Scholar 

  130. Winnicki A, Pearce CJ, Bicanic N (2001) Viscoplastic Hoffman consistency model for concrete. Comput Struct 79:7–19

    Article  Google Scholar 

  131. Wong T (1985) Geometric probability approach to the characterization and analysis of microcracking in rocks. Mech Mater 4(3–4):261–276

    Article  Google Scholar 

  132. Xie SY, Shao JF (2006) Elastoplastic deformation of a porous rock and water interaction. Int J Plast 22(12):2195–2225

    Article  MATH  Google Scholar 

  133. Yahya OML, Aubertin M, Julien MR (2000) A unified representation of the plasticity, creep and relaxation behaviour of rocksalt. Rock Mech Min Sci 37:787–800

    Article  Google Scholar 

  134. Zhao Y (1998) Crack pattern evolution and a fractal damage constitutive model for rock. Int J Rock Mech Min Sci 35(3):349–366

    Article  Google Scholar 

  135. Zhou H, Jia Y, Shao JF (2008) A unified elastic–plastic and viscoplastic damage model for quasi-brittle rocks. Int J Rock Mech Min Sci 45:1237–1251

    Article  Google Scholar 

  136. Zhu QZ, Kondo D, Shao JF (2008) Micromechanical analysis of coupling between anisotropic damage and friction in quasi brittle materials: role of the homogenization scheme. Int J Solids Struct 45:1385–1405

    Article  MATH  Google Scholar 

  137. Zhu W, Baud P, Wong T-F (2010) Micromechanics of cataclastic pore collapse in limestone. J Geophys Res 115:B04405. doi:10.1029/2009JB006610

    Google Scholar 

  138. Zhu QZ, Shao JF, Kondo D (2011) A micromechanics-based thermodynamic formulation of isotropic damage with unilateral and friction effects. Int J Solids Struct 30:316–325

    MathSciNet  MATH  Google Scholar 

  139. Zolochevsky A, Voyiadjis GZ (2005) Theory of creep deformation with kinematic hardening for materials with different properties in tension and compression. Int J Plast 21:435–462

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research was carried out thanks to subsidies from the Ministries for Industry and Research and the Lorraine Region within the GISOS (www.gisos.org) framework. The authors express their gratitude to these organisations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragan Grgic.

Appendix

Appendix

1.1 Procedure for the identification of the model parameters

The values of the model parameters can easily be obtained from classical laboratory tests: a set of triaxial compressive tests (i.e. with different confining pressures) at both high (0.004 MPa s−1 in our short-term experiments) and very low (5 × 10−6 MPa s−1 in our long-term experiments) loading rates and some multi-step (i.e. variable stress) creep tests.

1.2 Elastic parameters

The bulk modulus K is determined from an isotropic compressive test. The shear modulus G is determined from triaxial compressive tests at the first unloading–reloading cycle, i.e. at the beginning of the loading when the material is still undamaged.

1.3 Thresholds

The parameters Y o , η o , Y m and η m are the values of \( Y^{*} \) and \( \eta^{*} \) (Eq. 19) for initial and peak surfaces of inelasticity (Fig. 4), respectively. Within the coupled damage–plasticity scheme, η m (Eqs. 19, 20, 26) is the maximal internal cohesion of the undamaged material and has to be defined in such a way that (1 − D max)η m corresponds to the highest position of the damaged yield function (Eq. 38), with D max the maximal value of the damage variable D.

\( (\gamma^{in*} )_{{{ \hbox{max} }}} \), the maximal inelastic distortion the material can support, should be determined from uniaxial or triaxial compressive tests with very slow loading rate, as illustrated in Fig. 23a.

Fig. 23
figure 23

a Identification procedure for the parameter \( (\gamma^{{{\text{in}}*}} )_{{{ \hbox{max} }}} \) from a triaxial compressive test on iron ore. b Identification procedure for the parameters Y 1 and Y 2 from a set of triaxial compressive tests on iron ore

The evolution law of \( w_{{{\text{d max}}}}^{\text{in*}} \) (Eq. 19), the maximal deviatoric energy, is obtained from a set of triaxial compressive tests (i.e. with different confining pressures). It is necessary to plot a graph showing the maximal deviatoric energy of each test versus the stress triaxiality ratio at failure. w 1 is the slope of this curve and w 2 is the maximal deviatoric energy at failure for a uniaxial stress path.

\( w_{{{\text{d crit}}}}^{\text{in*}} \), the deviatoric inelastic energy at the damage onset (Eq. 37), is supposed to be equal to zero. Indeed, according to our experimental results (Fig. 7), damage (i.e. micro-cracking) appears at the very beginning of inelastic flow.

1.4 Viscoplasticity parameters

As supposed in Sect. 3, the volumetric strains are principally due to damage mechanisms. In order to respect this assumption, the inelastic dilatancy coefficient β in (Eqs. 1011) has to be equal to 0, thus inducing isovolumetric inelasticity.

The scaling parameters Y 1, Y 2 and η 1 of the frictional and cohesive strengths, Y and η (Eq. 19), respectively, have to be determined from a set of triaxial compressive tests (i.e. with different confining pressures) performed with a very slow loading rate in such a way that the maximal inelastic distortion \( (\gamma^{{{\text{in}}*}} )_{{{ \hbox{max} }}} \) is mobilised. A graph needs to be plotted showing the slope and the value at origin of the yield surface for different values of the inelastic distortion. Hence, the parameters Y 1, Y 2 and η 1 can be determined from nonlinear adjusting methods. Figure 23b illustrates the identification procedure for the parameters Y 1 and Y 2 from a set of triaxial compressive tests on iron ore.

The scaling parameters A and n of the kinetic law (Eq. 25) are generally identified from multi-step creep tests, using nonlinear adjusting methods (e.g. numerical nonlinear least squares fitting method). These parameters should be determined for low stress levels, i.e. when damage and therefore volumetric strains are not of great importance. After a complete unloading (i.e. zero stress step) and stabilization of the reverse creep, it is also possible to identify the fraction of the recoverable inelastic energy x (Eq. 21) and the scaling parameter B (Eq. 22). We found almost the same value for the scaling parameters A (Eq. 25) and C (Eq. 24). These parameters were determined from the multi-step creep test on iron ore represented in Figs. 6 and 19.

1.5 Damage-related parameters

For the determination of ξ (Eq. 35), it is necessary to plot the damage variable D (0 < D < 1) versus the ratio \( w_{\text{d}}^{\text{in*}} /w_{{{\text{d max}}}}^{\text{in*}} \). During triaxial compressive tests with constant strain rate, the former is calculated from the decrease of elastic properties (Eqs. 3940) obtained using unloading–reloading cycles for example, whereas the latter is calculated by measuring the inelastic deformations. A linear regression on the experimental points is then necessary to obtain D max, which corresponds to ξ, for \( w_{\text{d}}^{\text{in*}} /w_{{{\text{d max}}}}^{\text{in*}} { = 1} \). Figure 24a illustrates the identification procedure for the parameter ξ from a triaxial compressive test on iron ore.

Fig. 24
figure 24

a Identification procedure for the parameter ξ = D max from a triaxial compressive test on iron ore. b Identification procedure for the parameters ϕ 1 and ϕ 2 from a triaxial compressive test on iron ore

The parameters ϕ 1 and ϕ 2 of the damage porosity ϕ d (Eq. 41) can be identified from triaxial compressive tests with constant strain rate. Since we considered that the volumetric strains are principally due to damage mechanisms (i.e. β in = 0), ϕ d corresponds to the volumetric inelastic deformation. It is necessary to plot the volumetric inelastic deformation versus the damage variable D and make a nonlinear regression to determine ϕ 1 and ϕ 2. This is illustrated in Fig. 24b.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grgic, D. Constitutive modelling of the elastic–plastic, viscoplastic and damage behaviour of hard porous rocks within the unified theory of inelastic flow. Acta Geotech. 11, 95–126 (2016). https://doi.org/10.1007/s11440-014-0356-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-014-0356-6

Keywords

Navigation