Skip to main content

Advertisement

Log in

Anti-skin-aging effects of tissue-cultured mountain-grown ginseng and quantitative HPLC/ELSD analysis of major ginsenosides

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Mountain-grown ginseng has free radical scavenging activity and suppresses inflammation. We evaluated the anti-skin-aging effects of tissue-cultured mountain-grown ginseng (TG) and its major ginsenosides. The effect of three extracts of TG and ginsenosides Rg1 (1), Rf (2), Rb1 (3), Re (4), and Rd (5) on the secretion of matrix metalloproteinase-1 (MMP-1) and collagen type I alpha 1 (COLIA1) was compared with that of tumor necrosis factor-alpha (TNF-α) stimulation of human dermal fibroblasts (HDFs), as determined via enzyme-linked immunosorbent assay. An analytical high-performance liquid chromatographic method with evaporative light-scattering detection (HPLC/ELSD) was developed for the simultaneous determination of the major ginsenosides in TG obtained via supercritical fluid CO2 or ethanol extraction. TG residues obtained via supercritical fluid CO2 extraction (TG1) and TG not subject to extraction (TG3) suppressed MMP-1 secretion in TNF-α-stimulated HDFs. Major ginsenoside content was higher in the TG1 than in residues extracted with ethanol (TG2) and TG3; ginsenoside Rg1 (1) content was the highest among all TG residues. Among them, ginsenosides Rg1 (1) and Re (4) suppressed MMP-1 in TNF-α-stimulated HDFs, whereas ginsenosides Rb1 (3) and Rd (5) increased COLIA1. In conclusion, TG and its active ginsenosides may have anti-skin-aging effects. Ginsenoside Rg1 (1) may also be beneficial in ameliorating skin damage. HPLC/ELSD can identify major ginsenosides and supercritical fluid CO2 extraction can be applied during health supplement or drug development.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ganceviciene R, Liakou AI, Theodoridis A, Makrantonaki E, Zouboulis CC (2012) Skin anti aging strateg Dermatoendocrinol 4:308–319. https://doi.org/10.4161/derm.22804

    Article  CAS  Google Scholar 

  2. Zhang S, Duan E (2018) Fighting against skin aging: the way from bench to bedside. Cell Transpl 27:729–738. https://doi.org/10.1177/0963689717725755

    Article  Google Scholar 

  3. Fisher GJ, Voorhees JJ (1998) Molecular mechanisms of photoaging and its prevention by retinoic acid: ultraviolet irradiation induces MAP kinase signal transduction cascades that induce Ap-1-regulated matrix metalloproteinases that degrade human skin in vivo. J Investig Dermatol Symp Proc 3:61–68. https://doi.org/10.1038/jidsymp.1998.15

    Article  CAS  PubMed  Google Scholar 

  4. Poljšak B, Dahmane RG, Godić A (2012) Intrinsic skin aging: the role of oxidative stress. Acta Dermatovenerol Alp Panon Adriat 21:33–36. https://doi.org/10.2478/v10162-012-0012-5

    Article  Google Scholar 

  5. Borg M, Brincat S, Camilleri G, Schembri-Wismayer P, Brincat M, Calleja-Agius J (2013) The role of cytokines in skin aging. Climacteric 16:514–521. https://doi.org/10.3109/13697137.2013.802303

    Article  CAS  PubMed  Google Scholar 

  6. Lee S, Yu JS, Phung HM, Lee JG, Kim KH, Kang KS (2020) Potential anti-skin aging effect of (-)-catechin isolated from the root bark of Ulmus davidiana var japonica in tumor necrosis factor-α-stimulated normal human dermal fibroblasts. Antioxidants 9(10):981. https://doi.org/10.3390/antiox9100981

    Article  CAS  PubMed Central  Google Scholar 

  7. Lee S, Nguyen QN, Phung HM, Shim SH, Kim D, Hwang GS, Kang KS (2021) Preventive effects of anthraquinones isolated from an Endophytic fungus, Colletotrichum sp JS-0367 in tumor necrosis factor-α-stimulated damage of human dermal fibroblasts. Antioxidants 10(2):200. https://doi.org/10.3390/antiox10020200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Parish LC, Crissey JT (1988) Cosmetics: a historical review. Clin Dermatol 6:1–4. https://doi.org/10.1016/0738-081X(88)90024-7

    Article  CAS  PubMed  Google Scholar 

  9. Jang H-Y, Park H-S, Kwon K-R, Rhim T-J (2008) A study on the comparison of antioxidant effects among wild ginseng, cultivated wild ginseng, and cultivated ginseng extracts. J Pharmacopuncture 11:67–78. https://doi.org/10.3831/KPI.2008.11.3.067

    Article  Google Scholar 

  10. Cho H-C, Lee S-G, Kwon K-R (2004) An experimental study on apoptosis of cultivated wild ginseng distilled herbal acupuncture by concentration level. J Pharmacopuncture 7:5–17. https://doi.org/10.3831/KPI.2004.7.2.005

    Article  Google Scholar 

  11. Lee YE, Lee HJ, Kim JS (2015) The anti-wrinkle effects of cultivated wild ginseng pharmacopuncture. J Acupunct Res 32(2):97–103

    Article  Google Scholar 

  12. Kim H-R, Lee C-H, Jung MY, Kim J-S, Kim H-J, Jeon H-S, Lee S-H, Kim J-H, Shin M-J, Ma S-Y (2019) Anti-obesity effects of cultivated ginseng,-wild simulated ginseng and-red ginseng extracts. Herb Formula Sci 27:269–284

    Google Scholar 

  13. Seo H-J, Eo HJ, Kim HJ, Jeon KS, Park GH, Hong SC, Jeong JB (2020) Effects of cultivated wild panax ginseng extract on the proliferation, differentiation and mineralization of osteoblastic MC3T3-E1 cells. Korean J Plant Res 33:227–236. https://doi.org/10.7732/kjpr.2020.33.4.227

    Article  Google Scholar 

  14. Liang Y, Zhao S (2008) Progress in understanding of ginsenoside biosynthesis. Plant Biol 10:415–421. https://doi.org/10.1111/j.1438-8677.2008.00064.x

    Article  CAS  PubMed  Google Scholar 

  15. Lee DG, Lee J, Yang S, Kim K-T, Lee S (2015) Identification of dammarane-type triterpenoid saponins from the root of Panax ginseng. Nat Prod Sci 21:111–121

    CAS  Google Scholar 

  16. Christensen LP (2008) Ginsenosides: chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 55:1–99. https://doi.org/10.1016/S1043-4526(08)00401-4

    Article  CAS  Google Scholar 

  17. Shibata S (1982) Chemistry of components in ginseng. J Tradit Sino Jpn Med 3:62–69

    CAS  Google Scholar 

  18. Liu L, Huang J, Hu X, Li K, Sun C (2011) Simultaneous determination of ginsenoside (G-Re, G-Rg1, G-Rg2, G-F1, G-Rh1) and protopanaxatriol in human plasma and urine by LC–MS/MS and its application in a pharmacokinetics study of G-Re in volunteers. J Chromatogr B 879:2011–2017. https://doi.org/10.1016/j.jchromb.2011.05.018

    Article  CAS  Google Scholar 

  19. Yamabe N, Kim Y-J, Lee S, Cho E-J, Park S-H, Ham J, Kim HY, Kang KS (2013) Increase in antioxidant and anticancer effects of ginsenoside Re–lysine mixture by Maillard reaction. Food Chem 138:876–883. https://doi.org/10.1016/j.foodchem.2012.12.004

    Article  CAS  PubMed  Google Scholar 

  20. Duan Z, Deng J, Dong Y, Zhu C, Li W, Fan D (2017) Anticancer effects of ginsenoside Rk3 on non-small cell lung cancer cells: in vitro and in vivo. Food Funct 8:3723–3736. https://doi.org/10.1039/C7FO00385D

    Article  CAS  PubMed  Google Scholar 

  21. Lu J-M, Yao Q, Chen C (2009) Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 7:293–302. https://doi.org/10.2174/157016109788340767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu W, Jiao C, Li H, Ma Y, Jiao L, Liu S (2018) LC-MS based metabolic and metabonomic studies of Panax ginseng. Phytochem Anal 29:331–340. https://doi.org/10.1002/pca.2752

    Article  CAS  PubMed  Google Scholar 

  23. Son TK, Eguchi T, Shoyama Y, Tanaka H (2019) ELISA for the detection of marker compound for crop fertilizer use of various medicinal crop extracts using bacterium. J Fac Agric Kyushu Univ 64:27–32. https://doi.org/10.5109/2231630

    Article  CAS  Google Scholar 

  24. Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb Pro Int Plant Propag Soc 30:421–427

    Google Scholar 

  25. Owen HR, Miller AR (1982) An examination and correction of plant tissue culture basal medium formulations plant Cell. Tissue Organ Cult 28:147–150. https://doi.org/10.1007/BF00055509

    Article  Google Scholar 

  26. Kitts DD, Wijewickreme AN, Hu C (2000) Antioxidant properties of a North American ginseng extract. Mol Cell Biochem 203:1–10. https://doi.org/10.1023/A:1007078414639

    Article  CAS  PubMed  Google Scholar 

  27. Shibata S (2001) Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Korean Med Sci 16(Suppl):S28–S37. https://doi.org/10.3346/jkms.2001.16.S.S28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Attele AS, Zhou Y-P, Xie J-T, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan C-S (2002) Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51:1851–1858. https://doi.org/10.2337/diabetes.51.6.1851

    Article  CAS  PubMed  Google Scholar 

  29. Siddiqi MH, Siddiqi MZ, Ahn S, Kang S, Kim Y-J, Sathishkumar N, Yang D-U, Yang D-C (2013) Ginseng saponins and the treatment of osteoporosis: mini literature review. J Ginseng Res 37:261–268. https://doi.org/10.5142/jgr.2013.37.261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim JH, Yi Y-S, Kim M-Y, Cho JY (2017) Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 41:435–443. https://doi.org/10.1016/j.jgr.2016.08.004

    Article  PubMed  Google Scholar 

  31. Dunaway S, Odin R, Zhou L, Ji L, Zhang Y, Kadekaro AL (2018) Natural antioxidants: multiple mechanisms to protect skin from solar radiation. Front Pharmacol 9:392. https://doi.org/10.3389/fphar.2018.00392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim E, Kim D, Yoo S, Hong YH, Han SYm Jeong S, Jeong D, Kim J-H, Cho JY, Park J, (2018) The skin protective effects of compound K, a metabolite of ginsenoside Rb1 from Panax ginseng. J Ginseng Res 42:218–224. https://doi.org/10.1016/j.jgr.2017.03.007

    Article  PubMed  Google Scholar 

  33. Song KC, Chang T-S, Lee H, Kim J, Park JH, Hwang GS (2012) Processed Panax ginseng, sun ginseng increases type I collagen by regulating MMP-1 and TIMP-1 expression in human dermal fibroblasts. J Ginseng Res 36:61–67. https://doi.org/10.5142/jgr.2012.36.1.61

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lim H, Kim HP (2007) Inhibition of mammalian collagenase, matrix metalloproteinase-1, by naturally-occurring flavonoids. Planta Med 73:1267–1274. https://doi.org/10.1055/s-2007-990220

    Article  CAS  PubMed  Google Scholar 

  35. Lang Q, Wai CM (2001) Supercritical fluid extraction in herbal and natural product studies—a practical review. Talanta 53:771–782. https://doi.org/10.1016/S0039-9140(00)00557-9

    Article  CAS  PubMed  Google Scholar 

  36. Kim I-W, Hong H-D, Choi SY, Hwang D-H, Her Y, Kim S-K (2011) Characterizing a full spectrum of physico-chemical properties of ginsenosides Rb1 and Rg1 to be proposed as standard reference materials. J Ginseng Res 35:487–496. https://doi.org/10.5142/jgr.2011.35.4.487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim SN, Ha YW, Shin H, Son SH, Wu SJ, Kim YS (2007) Simultaneous quantification of 14 ginsenosides in Panax ginseng CA Meyer (Korean red ginseng) by HPLC-ELSD and its application to quality control. J Pharm Biomed 45:164–170. https://doi.org/10.1016/j.jpba.2007.05.001

    Article  CAS  Google Scholar 

  38. Hong HD, Choi SY, Kim YC, Lee YC, Cho CW (2009) Rapid determination of ginsenosides Rb1, Rf, and Rg1 in Korean ginseng using HPLC. J Ginseng Res 33:8–12. https://doi.org/10.5142/JGR.2009.33.1.008

    Article  CAS  Google Scholar 

  39. Lee DG, Lee JS, Kim K-T, Kim HY, Lee S (2019) Analysis of major ginsenosides in various ginseng samples. J Appl Biol Chem 62:87–91. https://doi.org/10.3839/jabc.2019.013

    Article  Google Scholar 

  40. Ok S, Kang JS, Kim KM (2016) Simultaneous analysis method for polar and non-polar ginsenosides in cultivated wild ginseng by reversed-phase HPLC-CAD. J Life Sci 26:247–252. https://doi.org/10.5352/JLS.2016.26.2.247

    Article  Google Scholar 

  41. Xie J-T, Mehendale SR, Li X, Quigg R, Wang X, Wang C-Z, Wu JA, Aung HH, Rue PA, Bell GI (2005) Anti-diabetic effect of ginsenoside Re in ob/ob mice. Biochim Biophys Acta Mol Basis Dis 1740:319–325. https://doi.org/10.1016/j.bbadis.2004.10.010

    Article  CAS  Google Scholar 

  42. Cong L, Chen W (2016) Neuroprotective effect of ginsenoside Rd in spinal cord injury rats. Basic Clin Pharmacol Toxicol 119:193–201. https://doi.org/10.1111/bcpt.12562

    Article  CAS  PubMed  Google Scholar 

  43. Kim MK, Kang H, Baek CW, Jung YH, Woo YC, Choi GJ, Shin HY, Kim KS (2018) Antinociceptive and anti-inflammatory effects of ginsenoside Rf in a rat model of incisional pain. J Ginseng Res 42:183–191. https://doi.org/10.1016/j.jgr.2017.02.005

    Article  PubMed  Google Scholar 

  44. Oura H, Hiai S, Odaka Y, Yokozawa T (1975) Studies on the biochemical action of ginseng saponin: I. purification from ginseng extract of the active component stimulating serum protein biosynthesis. J Biochem 77:1057–1065. https://doi.org/10.1093/oxfordjournals.jbchem.a130806

    Article  CAS  PubMed  Google Scholar 

  45. Deng H-l, Zhang J-t (1991) Anti-lipid peroxilative effect of ginsenoside Rb1 and Rg1. Chin Med J 104:395–398. https://doi.org/10.5555/cmj.0366-6999.104.05.p395.01

    Article  CAS  PubMed  Google Scholar 

  46. Rui W, Yan-Nan L, Guang-Ji W, Hai-Ping H, Xiao-Lan W, Fang Z (2009) Neuroprotective effects and brain transport of ginsenoside Rg1. Chin J Nat Med 7:315–320. https://doi.org/10.1016/S1875-5364(10)60024-6

    Article  Google Scholar 

  47. Gao Y, Chu S, Zhang Z, Chen N (2017) Hepataprotective effects of ginsenoside Rg1–A review. J Ethnopharmacol 206:178–183. https://doi.org/10.1016/j.jep.2017.04.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry (iPET) through the Technology Commercialization Support Program and Advanced Production Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA), Korea (grant numbers: 817022-3 and 112044-3).

Funding

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry (iPET) through the Technology Commercialization Support Program and Advanced Production Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA), Korea (grant numbers:817022-3 and 112044-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghyun Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 320 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Phung, H.M., Lee, S. et al. Anti-skin-aging effects of tissue-cultured mountain-grown ginseng and quantitative HPLC/ELSD analysis of major ginsenosides. J Nat Med 76, 811–820 (2022). https://doi.org/10.1007/s11418-022-01633-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-022-01633-2

Keywords

Navigation