Skip to main content
Log in

The influence of hydroxyl volatile organic compounds on the oxidation of aqueous sulfur dioxide by oxygen

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Although the effect of volatile organic compounds (VOCs) on the oxidation of dissolved sulfur dioxide by oxygen has been the subject of many investigations, this is the first study which examines the effect of a large number of precisely 16 hydroxy compounds. The kinetics both in the absence and the presence of VOCs was defined by rate laws (A and B):

$$ \hbox{-} \mathrm{d}\left[\mathrm{S}\left(\mathrm{IV}\right)\right]/\mathrm{dt}={R}_o={k}_o\left[\mathrm{S}\left(\mathrm{IV}\right)\right] $$
(A)
$$ \hbox{-} \mathrm{d}\left[\mathrm{S}\left(\mathrm{IV}\right)\right]/\mathrm{dt}={R}_i={k}_i\left[\mathrm{S}\left(\mathrm{IV}\right)\right] $$
(B)

where R o and k o are the initial rate and first-order rate constant, respectively, in the absence of VOCs, R i , and k i are the initial rate and the first-order rate constant, respectively, in the presence of VOCs, and [S(IV)] is the concentration of dissolved sulfur dioxide, sulfur(IV). The nature of the dependence of k i on the concentration of inhibitor, [Inh], was defined by Eq. (C).

$$ {k}_i={k}_0/\left(1+B\left[\mathrm{Inh}\right]\right) $$
(C)

where B is an empirical inhibition parameter. The values of B have been determined from the plots of 1/k i versus [Inh]. Among aliphatic and aromatic hydroxy compounds studied, t-butyl alcohol and pinacol were without any inhibition effect due to the absence of secondary or tertiary hydrogen. The values of inhibition parameter, B, were related to k inh , the rate constant for the reaction of SO4 radical with the inhibitor, by Eq. (D).

$$ B=\left(9\pm 2\right)\times 1{0}^{-4}\times {k}_{inh} $$
(D)

Equation (D) may be used to calculate the values of either of B or k inh provided that the other is known. The extent of inhibition depends on the value of the composite term, B[Inh]. However, in accordance with Eq. (C), the extent of inhibition would be sizeable and measurable when B[Inh] > 0.1 and oxidation of S(IV) would be almost completely stopped when B[Inh] ≥ 10. B[Inh] value can be used as a guide whether the reaction step: SO4  + organics \( \overset{k_{inh}}{\to } \) SO4 2− + non-chain products: should be included in the multiphase models or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altwicker ER (1980) Advances in environmental sciences and engineering, Vol. 3. In: Pfaffin JR, Zieglar EN (eds) Gordon and Breach Science Publishers, New York, pp 80–91

  • Alyea HN, Backstrom HLJ (1929) The inhibitive action of alcohols on the autoxidation of sodium sulfite. J Am Chem Soc 51:90–107

    Article  CAS  Google Scholar 

  • Andrews JE, Brimblecombe P, Jickells TD, Liss PS, Reid B (2004) An introduction to environmental chemistry. Blackwell, Oxford, pp 122–123

    Google Scholar 

  • Anipsitakis GP, Dionysiou DD (2003) Degradation of organic contaminants in water with sulfate radicals generated by the conjucation of peroxymonosulfate with cobalt. Environ Sci Technol 37:4790–4797

    Google Scholar 

  • Atkinson R, Arey J (2003) Atmospheric degradation of volatile organic compounds. Chem Rev 103:4605–4638

    Article  CAS  Google Scholar 

  • Berglund J, Fronaeus S, Elding LI (1993) Kinetics and mechanism for manganese-catalyzed oxidation of sulfur(IV) by oxygen in aqueous solution. Inorg Chem 32:4527–4538

    Article  CAS  Google Scholar 

  • Brandt C, van Eldik VR (1995) Transition metal catalyzed oxidation of aqueous sulfur(IV) oxides. Atmospheric relevant process and mechanisms. Chem Rev 95:119–190

    Article  CAS  Google Scholar 

  • Brimblecombe P (1996) Air composition and chemistry, Cambridge, pp116-117

  • Buxton GV, McGowan S, Salmon GA, Williams JE, Wood ND (1996) A study of the spectra and reactivity of oxysulfur-radical anions in the chain oxidation of S(lV): a pulse and γ-radiolysis study. Atmos Environ 30:2483–2493

    Article  CAS  Google Scholar 

  • Connick RE, Zhang YX (1996) Kinetics and mechanism of oxidation of HSO3 by O2. The manganese(II) catalyzed reaction. Inorg Chem 35:4613–4621

    Article  CAS  Google Scholar 

  • Czuczwa J, Leuenberger C, Tremp J, Giger W, Ahel M (1987) Determination of trace levels of phenol and cresols in rain by continuous liquid-liquid extraction and high-performance liquid chromatography. J Chromatogr 403:233-241

    Google Scholar 

  • Dhayal Y, Chandel CPS, Gupta KS (2014) Role of some organic inhibitors on the oxidation of dissolved sulphur dioxide by oxygen in rainwater medium. Environ Sci Pollut Res 21(5):3474–3483

    Google Scholar 

  • Ervens B, Gligorovski S, Herrmann H (2003) Temperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solutions. Phys Chem Chem Phys 5:1811–1824

    Article  CAS  Google Scholar 

  • Fisher M, Warneck P (1996) Photodecomposition and photoxidation of hydrogen sulphite in aqueous solution. J Phys Chem 100:15111–15117

    Article  Google Scholar 

  • Fuzzi S, Facchini MC, Decesari S, Matta E, Mircea M (2002) Soluble organic compounds in fog and cloud droplets: what have we learned over the past few years? Atmos Res 64:89–98

    Article  CAS  Google Scholar 

  • Grgic I, Poznic M, Bizjak M (1999) S(IV) autoxidation in atmospheric liquid water: the role of Fe(II) and the effect of oxalate. J Atmos Chem 33:89–102

    Article  CAS  Google Scholar 

  • Gupta KS (2012) Aqueous phase atmospheric oxidation of sulfur dioxide by oxygen: role of trace atmospheric constituents—metals, volatile organic compounds and ammonia. J Indian Chem Soc 89:713–724

    CAS  Google Scholar 

  • Gupta KS, Bhargava P, Manoj SV (1999) Kinetics of silver(I) catalysed oxidation of sulfur(IV) by peroxodisulfate. Indian J Chem 38A:692–697

    CAS  Google Scholar 

  • Gupta KS, Bhargava P, Manoj SV (2001) Kinetics of diammine silver(I)-catalysed oxidation of sulfur(IV) by dioxygen in ammonia buffers. Trans Met Chem 26:71–75

    Article  CAS  Google Scholar 

  • Gupta KS, Mehta RK, Sharma AK, Mudgal PK, Bansal SP (2008) Kinetics of uninhibited and ethanol–inhibited CoO, Co2O3 and Ni2O3 catalyzed autoxidation of sulfur(IV) in alkaline medium. Trans Metll Chem 33:809–817

    CAS  Google Scholar 

  • Gupta KS, Jain U, Singh A, Dhayal Y, Rani A (2012) Kinetics of palladium(II)-catalyzed oxidation of sulfur(IV) by oxygen. Indian J Chem 89:1035–1043

    CAS  Google Scholar 

  • Hayon E, Treinin A, Wilf J (1972) Electronic spectra, photochemistry and autoxidation mechanism of the sulfite-bisulfite pyrosulfite systems. The SO2 , SO3 , SO4 and SO5 radicals. J Am Chem Soc 94:47–57

    Article  CAS  Google Scholar 

  • Herrmann H (2003) Kinetics of aqueous phase reactions relevant to atmospheric chemistry. Chem Rev 103:4691–4716

    Article  CAS  Google Scholar 

  • Herrmann H, Exner M, Jacobi HW, Raabe G, Zellner R (1995) Laboratory studies of atmospheric aqueous-phase free-radical chemistry: kinetic and spectroscopic studies of reactions of NO3 and SO4 radicals with aromatic compounds. Faraday Discuss 100:129–153

    Article  CAS  Google Scholar 

  • Herrmann H, Hoffmann D, Schaefer T, Brauer P, Tilgner A (2010) Tropospheric aqueous-phase free-radical chemistry: radical sources, spectra, reaction kinetics and prediction. Chem Phys Chem 11:3796–3822

    Article  CAS  Google Scholar 

  • Hester RE, Harrrison RM., Derwent RG (1995) Sources distributions and fates of VOCs in the atmosphere: Volatile organic compounds in atmosphere, Vol. 4. In: Harrision RM, Hester RE (eds) Royal chemical society, London, pp 1–16

  • Hoffmann MR, Jacob DJ (1984) Kinetics and mechanisms of the catalytic oxidation of dissolved sulfur dioxide in aqueous solution: an application to nighttime fog water chemistry. In: Calvert JG (ed) SO2, NO and NO2 oxidation mechanisms: atmospheric considerations. Butterworth Publishers, Boston, pp 101–172

  • Hoffmann D, Weigert B, Barzaghi P, Herrmann H (2009) Reactivity of poly-alcohols towards OH, NO3 and SO4 in aqueous solution. Phys Chem Chem Phys 11:9351–9363

    Google Scholar 

  • Huie RE, Neta P (1984) Chemical behaviour of SO3 and SO5 radicals in aqueous solutions. J Phys Chem 88:5665–5669

    Article  CAS  Google Scholar 

  • Huie RE, Clifton CL, Altstein N (1989) A pulse radiolysis and flash photolysis study of the radicals SO 2, SO 3, SO 4, and SO 5. Radiat Phys Chem 33:361–370

    Google Scholar 

  • Jacob DJ (1999) Introduction to atmospheric chemistry. Princeton University Press, Princeton, p 26

    Google Scholar 

  • Jiang P-Y, Katsumura Y, Nagaishi R, Domae M, Ishikawa K, Ishiqure K, Yoshida Y (1992) Pulse radiolysis study of concentrated sulfuric acid solutions. Formation mechanism, yield and reactivity of sulfate radicals. J Chem Soc Faraday Trans 88:1653–1658

    Google Scholar 

  • Khursan SL, Semes’ko DG, Safiullin RL (2006) Quantum-chemical modeling of the detachment of hydrogen atoms by the sulfate radical anion. Russ J Phys Chem 80:366–371

    Article  CAS  Google Scholar 

  • Khursan SL, Semes’ko DG, Teregulova AN, Safiullin RL (2008) Analysis of the reactivities of organic compounds in hydrogen atom abstraction from their C-H bonds by the sulfate radical anion SO4 . Kinet Catal 49:202–211

    Article  CAS  Google Scholar 

  • Khwaja H, Brudnoy S, Husain L (1995) Chemical characterization of three summer cloud episodes at White-face Mountain. Chemosphere 31:3357–3381

    Article  CAS  Google Scholar 

  • Kuo DTF, Krik DW, Jia CQ (2006) The chemistry of aqueous S(IV)-Fe-O2 system: state of the art. J Sulfur Chem 27:461–530

    Article  CAS  Google Scholar 

  • Laidler KJ (1987) Chemical kinetics. Harper & Row, New York, pp 289–290

    Google Scholar 

  • Loflund M, Kasper-Giebl A, Schuster B, Giebl H, Hitzenberger R, Puxbaum H (2002) Formic, acetic, oxalic, malonic and succinic acid concentrations and their contributions to organic carbon in cloud water. Atmos Environ 36:1553–1558

    Google Scholar 

  • Madnawat PVS, Rani A, Sharma M, Prasad DSN, Gupta KS (1993) Role of surface and leached metal ion catalysis in autoxidation of sulfur(IV) in power plant fly ash suspensions. Atmos Environ 27A:1985–1991

    Article  CAS  Google Scholar 

  • Manoj SV, Singh R, Sharma M, Gupta KS (2000a) Kinetics and mechanism of heterogeneous cadmium sulfide and homogenous manganese(II) catalyzed oxidation of sulfur(IV) by dioxygen in acetate buffered medium. Indian J Chem 39A:507–521

    CAS  Google Scholar 

  • Manoj SV, Mishra CD, Sharma M, Rani A, Jain R, Bansal SP, Gupta KS (2000b) Iron, manganese and copper concentrations in wet precipitations and kinetics of the oxidation of SO2 in rain water at two urban sites, Jaipur and Kota, in western India. Atmos Environ 34:4479–4486

    Article  CAS  Google Scholar 

  • Manoj SV, Mudgal PK, Gupta KS (2008) Kinetics of iron(III)-catalyzed autoxidation of sulfur(IV) in acetate buffered medium. Trans Met Chem 33:311–316

    Article  CAS  Google Scholar 

  • Martin LR, Hill MW, Tai AF, Good TW (1991) The iron catalyzed oxidation of sulfur(IV) in aqueous solution: differing effects of organics at high and low pH. J Geophys Res 96(D2):3085–3097

    Article  CAS  Google Scholar 

  • Morrision RT, Boyd NR (2005) Organic chemistry. Pearson, Delhi, pp 271–272

    Google Scholar 

  • Mudgal PK, Sharma AK, Mishra CD, Bansal SP, Gupta KS (2008) Kinetics of ammonia and ammonium ion inhibition of the atmospheric oxidation of aqueous sulfur dioxide by oxygen. J Atmos Chem 61:31–55

    Article  CAS  Google Scholar 

  • Neta P, Huie RE, Ross AB (1988) Rate constants for reactions of inorganic radicals in aqueous solutions. J Phys Chem Ref Data 17(3):1027–1284

    Google Scholar 

  • Neta P, Maruthamuthu P, Carton PM, Fessenden RW (1978) Formation and reactivity of amino radical. J Phys Chem 82:1875–1878

    Article  CAS  Google Scholar 

  • Pasiuk-Bronikowska W, Bronikowska T, Ulejczyk M (1997) Solubilization of organics in water coupled with sulfite autoxidation. Water Res 31:1767–1775

    Article  CAS  Google Scholar 

  • Pasiuk-Bronikowska W, Bronikowska T, Ulejczyk M (2003a) Synergy in the autoxdation of S(IV) inhibited by phenolic compounds. J Phys Chem A 107:1742–1748

    Article  CAS  Google Scholar 

  • Pasiuk-Bronikowska W, Bronikowska T, Ulejczyk M (2003b) Inhibition of the S(IV) autoxidation in the atmosphere by secondary terpeinic compounds. J Atmos Chem 44:97–111

    Article  CAS  Google Scholar 

  • Raja S, Raghunathan R, Kommalapati RR, Xinhun S, Collett JL, Valsaraj T (2009) Organic composition of fog water in the Texas-Louisiana gulf coast corridor. Atmos Environ 43:4214–4222

    Article  CAS  Google Scholar 

  • Rani A, Prasad DSN, Madnawat PVS, Gupta KS (1992) The role of free fall atmospheric dust in catalyzing autoxidation of aqueous sulfur dioxide. Atmos Environ 26A:667–673

    Article  CAS  Google Scholar 

  • Richartz H, Reischl A, Trautner F, Hutzinger O (1990) Nitrated phenols in fog. Atmos Environ 24A:3067–3071

    Article  CAS  Google Scholar 

  • Rudizinski KJ, Gmachowaski L, Kuznietsova I (2009) Reactions of isoprene and sulphoxy radicals-anions—a possible source of atmospheric organosulphites and organosulphates. Atmos Chem Phys 9:2129–2140

    Article  Google Scholar 

  • Rudzinski KJ (2004) Degradation of isoprene in the presence of sulphixy radical anions. J Atmos Chem 48:191–216

    Article  CAS  Google Scholar 

  • Rudzinski KJ, Pasiuk-Bronikowska W (1999) Experimental insight into inhibition of S(IV) autoxidation by some organics, proceedings of EUROTRAC symposium. In: Borell P (ed) Borrell PM. WIT Press, Southampton, pp 751–755

    Google Scholar 

  • Rudzinski KJ, Pasiuk-Bronokowska (2001) Isoprene inhibition of S(IV) autoxidation initiated by peroxydisulfate. In: Midgley PM, Reuther MJ, Williams M (Eds) Transport and chemical transformation in the troposphere, Proc. EUROTRAC-2 Symp. 2000, Springer, Berlin, pp. 1–4

  • Sharma AK, Singh A, Mehta RK, Sharma S, Bansal SP, Gupta KS (2011) Kinetics of copper(II)- catalyzed oxidation of S(IV) by atmospheric oxygen in ammonia buffered solutions. Int J Chem Kinet 43:379–392

    Article  CAS  Google Scholar 

  • Shen X, Zhao Y, Chen Z, Huang D (2013) Heterogenous reactions of volatile organic compounds in the atmosphere. Atmos Environ 68:297–314

    Article  CAS  Google Scholar 

  • Singh H, Chen Y, Staudt A, Jacob D, Blake D, Heikes B, Snow J (2001) Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds. Lett Nat 410:1078–1081. doi:10.1038/35074067

    Google Scholar 

  • Singh HB, Tabazadeh A, Evans MJ, Field BD, Jacob DJ, Sachse G, Crawford JH, Shetter RE, Brune W.H (2003) Oxygenated volatile organic chemicals in the oceans: inferences and implications based on atmospheric observations and air-sea exchange models. Geophys Res Lett 30, doi: 10.1029/2003GL017933

  • Singh HB, Salas LJ, Chatfield RB, Czech E, Fried A, Walega J, Evans MJ, Field BD, Jacob DJ, Blake D, Heikes B, Talbot R, Sachse G, Crawford JH, Avery MA, Sandholm S, Fuelberg H (2004) Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals based on measurements over the Pacific during TRACE-P. J Geophys Res 109, d15s07, doi:10.1029/2003jd003883

  • Tang Y, Thron RP, Mauldin RL, Wine PH (1988) Kinetics and spectroscopy of the SO4- radical in aqueous solution. J Photochem Photobiol A 44:248–258

    Google Scholar 

  • Wolf A, Deutsch F, Hoffmann P, Ortner HM (2000) The influence of oxalate on Fe-catalyzed S(IV) oxidation by oxygen in aqueous solution. J Atmos Chem 37:125–135

    Google Scholar 

  • Zhao Y, Hallar AG, Mazzoleni LR (2013) Atmospheric organic matter in clouds: exact masses and molecular formula identification using ultrahigh resolution FT-ICR mass spectrometry. Atmos Chem Phys Discus 13:20561–20610

    Google Scholar 

  • Ziajka J, Pasiuk-Bronikowska W (2003) Autoxidation of sulfur dioxide in the presence of alcohols under conditions related to tropospheric aqueous phase. Atmos Environ 37:3913–3922

    Google Scholar 

  • Ziajka J, Beer F, Warneck P (1994) Iron-catalyzed oxidation of bisulfite aqueous solution: evidence for a free radical chain mechanism. Atmos Environ 28:2549–2552

    Article  CAS  Google Scholar 

  • Ziajka J, Krejewska M, Pasuik-Bronikowska W (2001) The role of myrtenal in the Autoxidation of S(IV) under acidic conditions, In: Hjorth J, Reas F, Angeletti G (eds) Proceedings of Eight European Symposium of on the Physico-chemical Behaviour of Atmospheric Pollutants. CEC, JRC, Ispra, pp CMD/APP 1–4

Download references

Acknowledgments

Atmospheric Science Division of SERB/DST, New Delhi and CSIR, New Delhi supported this work. The principal investigator is thankful to Prof. B. M. Reddy (NGRI, Hyderabad), Prof. U. C. Mohanty (IIT, New Delhi), Prof. Shyam Lal (PRL, Ahemdabad) and Dr. P. Sanjeeva Rao (SERB/DST, New Delhi) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Gupta.

Additional information

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhayal, Y., Chandel, C.P.S. & Gupta, K.S. The influence of hydroxyl volatile organic compounds on the oxidation of aqueous sulfur dioxide by oxygen. Environ Sci Pollut Res 21, 7805–7817 (2014). https://doi.org/10.1007/s11356-014-2661-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2661-x

Keywords

Navigation