Skip to main content
Log in

Degradation of Isoprene in the Presence of Sulphoxy Radical Anions

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Autoxidation of S(IV) initiated by manganese sulphate or potassium peroxydisulphate in alkaline aqueous solutions was significantly slowed down by dissolved isoprene, which decayed in the process. The laboratory experiments were carried out in a batch, perfectly mixed reactor, which had no gas space. The concentration–time profiles of oxygen were measured with a Clark-type electrode. The profiles of sulphite species and of isoprene were evaluated from the UV spectra of solutions. The kinetic analysis indicated that isoprene reacted directly with sulphate radical anions produced during the S(IV) autoxidation. A relative second-order rate constant of (2.12 ± 0.37) × 109 M−1 s−1 was determined for this reaction at 25 °C, pH (8.0–8.5) and ionic strength of (1.7–4.9) × 10−3 M (the reference rate constant of the reaction of sulphate radical anions with sulphite ions equalled 3.4 × 108 M−1 s−1). A tentative mechanism of isoprene oxidation during S(IV) autoxidation, which included formation of isoprene – SO•− 4 adduct, was based on the analogy to the gas-phase reactions of isoprene and to the liquid-phase reactions of sulphate radical anions with other compounds. Atmospheric significance of the aqueous-phase reaction of isoprene with sulphate radicals was discussed. Approximate analysis showed the reaction is a potential sink for isoprene in the aqueous phase and in the gas–liquid systems of high liquid water content (LWC > 10−5 m3 m−3). The aqueous-phase oxidation of isoprene can produce secondary pollutants, and influence transformation and the long-range transport of SO2 in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, R., 2000: Atmospheric chemistry of VOCs and NOx, Atmos. Environ. 34, 2063–2101.

    Google Scholar 

  • Aumont, B., Madronich, S., Bey, I., and Tyndall, G. S., 2000: Contribution of secondary VOC to the composition of aqueous atmospheric particles: A modelling approach, J. Atmos. Chem. 35,59–75.

    Google Scholar 

  • Barlow, S., Berglund, J., Buxton, G. V., McGowan, S., and Salmon, G. A., 1993: Kinetics and mechanism of acid generation in clouds and precipitation, in P. Warneck (ed.), HALIPP Annual Report 1992, EUROTRAC ISS, Garmisch-Partenkirchen, pp. 49–56.

    Google Scholar 

  • Barlow, S., Buxton, G. V., Salmon, G. A., and Williams, J. E., 1994: Kinetics and mechanism of acid generation in clouds and precipitation, in P. Warneck (ed.), HALIPP Annual Report 1993, EUROTRAC ISS, Garmisch-Partenkirchen, pp. 48–53.

  • Betterton, E. A. and Hoffmann, M. R., 1988: Oxidation of aqueous SO2 by peroxymonosulphate, J.Phys. Chem. 92, 5962–5965.

    Google Scholar 

  • Bonsang, B., 2000: Air-sea exchange of non-methane hydrocarbons, in S. Larsen, F. Fiedler and P. Borrell (eds.), Exchange and Transport of Air Pollutants over Complex Terrain and the Sea. Vol. 9: Transport and Chemical Transformation of Pollutants in the Troposphere, Springer-Verlag, Berlin-Heidelberg, pp. 168–180.

    Google Scholar 

  • Borbon, A., Fontaine, H., Veillerot, M., Locoge, N., Galloo, J. C., and Guillermo, R., 2001: An investigation into the traffic-related fraction of isoprene at an urban location, Atmos. Environ. 35, 3749–3760.

    Google Scholar 

  • Broderick, B. M. and Marnane, I. S., 2002: A comparison of the C2-C9 hydrocarbon composition of vehicle fuels and urban air in Dublin, Ireland, Atmos. Environ. 36975–986.

    Google Scholar 

  • Buxton, G. V., McGowan, S., Salmon, G. A., Williams, J. E., and Wood, N. D., 1996: A study of the spectra and reactivity of oxysulphur-radical anions involved in the chain oxidation of S(IV): A pulse and ?-radiolysis study, Atmos. Environ. 30, 2483–2493.

    Google Scholar 

  • Buxton, G. V., Salmon, G. A., and Williams, J. E.: 2000: The reactivity of biogenic monoterpenes towards OH· and SO _4 · radicals in de-oxygenated acidic solution, J. Atmos. Chem. 36, 111–134.

    Google Scholar 

  • CAPRAM2.4 (MODAC) mechanism, 2002: http://www.tropos.de/CHEMIE/multimod/CAPRAM/ CAPRAM24.pdf, accessed on 31st Jan. 2003.tz, U., and nowius, K. J. 1994: Kinetics and mechanism of the oxidation of sulphur (IV) by peroxomonosulphuric acid anion, Atmos. Environ. 28, 439–448.

    Google Scholar 

  • Elkanzi, E. M. and Bee Kheng, G., 2000: H2O2/UV degradation kinetics of isoprene in aqueous solution, J. Hazard. Mater. 73, 55–62.

    Google Scholar 

  • Ervens, B., George, C., Williams, J. E., Buxton, G. V., Salmon, G. A., Bydder, M., Wilkinson, F., Dentener, F., Mirabel, P., Wolke, R., and Herrmann, H., 2003: CAPRAM 2.4 (MODAC mechanism): An extended and condensed tropospheric aqueous phase mechanism and its application, J. Geophys. Res. 108, D14, 4426.

    Google Scholar 

  • Fall, R. and Copley, S. D., 2000: Bacterial sources and sinks of isoprene, a reactive atmospheric hydrocarbon, Environ. Microbiol. 2, 123–130.

    Google Scholar 

  • Fronaeus, S., Berglund, J., and Elding, L. I., 1998, Iron-manganese redox processes and synergism in the mechanism for manganese-catalysed autoxidation of hydrogen sulphite, Inorg. Chem. 37, 4939–4944.

    Google Scholar 

  • Fuentes, J. D., Hayden, B. P., Garstang, M., Lerdau, M., Fitzjarrald, D., Baldocchi, D. D., Monson, R., Lamb, B., and Geron, C., 2001: New directions: VOCs and biosphere-atmosphere feedbacks, Atmos. Environ. 35, 189–191.

    Google Scholar 

  • Fuzzi, S. and Ebel, A., 2000: Research on clouds within EUROTRAC, in P. Borrell and P. M. Borrell (eds.), Transport and Chemical Transformation of Pollutants in the Troposphere, Springer, Berlin, pp. 45–68.

    Google Scholar 

  • Geiger, H., Barnes, I., Bejan, I., Benter, T., and Spitter, M., 2003: The tropospheric degradation of isoprene: An updated module for the regional atmospheric chemistry mechanism, Atmos. Environ. 37, 1503–1519.

    Google Scholar 

  • Guenther, A., 2002: The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems, Chemosphere 49, 837–844.

    Google Scholar 

  • Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamarju, R., Taylor, J., and Zimmerman, P., 1995: A global model of natural volatile organic compound emissions, J.Geophys. Res. (D) 100, 8873–8892.

    Google Scholar 

  • Herrmann, H., Ervens, B., Jacobi, H.-W., Wolke, R., Nowacki, P., and Zellner, R., 2000: CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry, J. Atmos. Chem. 36, 231–284.

    Google Scholar 

  • Herrmann, H., Jacobi, H.-W., Raabe, G., Reese, A., and Zellner, R., 1996a: Laser-spectroscopic laboratory studies of atmospheric aqueous phase free radical chemistry, Fresenius J. Anal. Chem. 355, 343–344.

    Google Scholar 

  • Herrmann, H., Jacobi, H.-W., Raabe, G., Reese, A., and Zellner, R., 1996b: Laboratory studies on the reactivity of NO3 and SO _4 radicals towards aromatics in aqueous solution}, in Ph. Mirabel (ed.), Homogeneous and Heterogeneous Chemical Processes in the Troposphere, Proceedings of the Joint EC/EUROTRAC Workshop Lactoz-Halipp, Strasbourg 1995, Office for Official Publications of the European Communities, Luxembourg, pp. 166–171.

    Google Scholar 

  • Herrmann, H., Reese, A., and Zellner, R., 1994: Spectroscopy of SO _4 (x= 3, 4, 5) radical anions and their kinetics in the conversion of S(IV) in aqueous solution}, in P. M. Borrell, P. Borrell, T. Cvitas and W. Seiler (eds.), Transport and Transformation of Pollutants in the Troposphere, Proceedings of the EUROTRAC Symposium '94, Garmisch-Partenkirchen 1994, SPB Academic Publishing bv, The Hague, pp. 1017–1020.

    Google Scholar 

  • Herrmann, H., Reese, A., and Zellner, R., 1995: Time-resolved UV/VIS diode array absorption spectroscopy of SO _x Herrmann, H., Reese, A., and Zellner, R., 1995: Time-resolved UV/VIS diode array absorption spectroscopy of SO _x (x=3, 4, 5) radical anions in aqueous solution}, J. Mol. Struct. 348, 183–186.

    Google Scholar 

  • Hine, J. and Mookerjee, P. K., 1975: The intrinsic hydrophylic character of organic compounds.Correlations in terms of structural contributions, J. Org. Chem. 40, 292–298.

    Google Scholar 

  • Huie, R. E. and Neta, P., 1984: Chemical behaviour of SO _3 and SO _5 radicals in aqueous solutions}, J. Phys. Chem. 88, 5665–5669.

    Google Scholar 

  • Huie, R. E. and Neta, P., 1987: Rate constants for some oxidations of S(IV) by radicals in aqueous solutions, Atmos. Environ. 21, 1743–1747.

    Google Scholar 

  • Huie, R. E. and Sieck, L. W., 1999: SOx radical monoanions-Reactions in solution and in the gas phase, in Z. B. Alfassi (ed.), S-Centered Radicals, Wiley, Chichester, pp. 63–95.

  • Jones, A. W., Lagesson, V., and Tagesson, C., 1995: Determination of isoprene in human breath by thermal desorption gas chromatography with ultraviolet detection, J. Chromatogr. B Biomed.Appl. 672, 1–6.

    Google Scholar 

  • Karl, T., Prazeller, P., Mayr, D., Jordan, A., Rieder, J., Fall, R., and Lindinger, W., 2001: Human breath isoprene and its relation to blood cholesterol levels: New measurements and modelling, J. Appl. Physiol. 91, 762–770.

    Google Scholar 

  • Kesselmeier, J. and Staudt, M., 1999: Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology, J. Atmos. Chem. 33, 23–88.

    Google Scholar 

  • Laval-Szopa, S., Aumont, B., and Madronich, S., 2003: Development of explicit chemical scheme for tropospheric VOC oxidation-A self generating approach, in R. Losno (ed.), Shaping the Future of Atmospheric Chemistry Research in Europe, Proceedings of the EC/EUROTRAC-2 Joint Workshop, Editions Paris 7 Denis Diderot, Paris, pp. 27–31.

    Google Scholar 

  • LeBras, G. and the LACTOZ Steering Group, 1997: Oxidation mechanism of isoprene, in G. LeBras (ed.), Chemical Processes in Atmospheric Oxidation: Laboratory Studies of Chemistry Related to Tropospheric Ozone. Vol. 3: Transport and Chemical Transformation of Pollutants in the Troposphere, Springer-Verlag, Berlin-Heidelberg, pp. 68–72.

    Google Scholar 

  • Leriche, M., Voisin, D., Chaumerliac, N., Monod, A., and Aumont, B., 2000: A model for tropospheric multiphase chemistry: Application to one cloudy event during CIME experiment, Atmos.Environ. 34, 5015–5036.

    Google Scholar 

  • Master Chemical Mechanism 3, 2002: http://chmlin9.leeds.ac.uk/MCMframe.html, accessed on 15th Feb. 2003.

  • Matsunaga, S., Mochida, M., Saito, T., and Kawamura, K., 2002: In situ measurement of isoprene in the marine air and surface seawater from the western North Pacific, Atmos. Environ. 36, 6051–6057.

    Google Scholar 

  • McAuliffe, C., 1966: Solubility in water of paraffin, cycloparaffin, olefin, acetylene, cycloolefin and aromatic hydrocarbons, J. Phys. Chem. 70, 1267–1275.

    Google Scholar 

  • McElroy, W.J.and Waygood, S.J.,1990:Kinetics of the reactions of the SO-4 radical with SO-4,S2O8-2,HO and Fe2+,J.Chem.Soc.araday Trans. 86,2557–2564.

  • Milne, P. J., Riemer, D. D., Zika, R. G., and Brand, L. E., 1995: Measurement of vertical distribution of isoprene in surface seawater, its chemical fate, and its emission from several phytoplankton monocultures, Marine Chem. 48, 237–244.

    Google Scholar 

  • Neta, P., Huie, R. E., and Ross, A. B., 1988: Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data 17, 1027–1284.

    Google Scholar 

  • NIST ChemistryWebBook, 2001: http://webbook.nist.gov/chemistry, (search for isoprene), accessed on 24th Jan. 2003.

  • NTP, Health & Safety Information, 2001: http://ntp-server.niehs.nih.gov (search for isoprene), accessed on 28th Jan. 2003.

  • Pasiuk-Bronikowska, W., Bronikowski, T., and Ulejczyk, M., 2003a: Inhibition of the S(IV) autoxidation in the atmosphere by secondary terpenic compounds, J. Atmos. Chem. 44, 97–111.

    Google Scholar 

  • Pasiuk-Bronikowska, W., Bronikowski, T., and Ulejczyk, M., 2003b: Synergy in the autoxidation of S(IV) inhibited by phenolic compounds, J. Phys. Chem. A 107, 1742–1748.

    Google Scholar 

  • Pedersen, T, and Sehested, K., 2001: Rate constants and activation energies for ozonolysis of isoprene, methacrolein and methyl-vinyl-ketone in aqueous solution: Significance to the in-cloud ozonation of isoprene, Int. J. Chem. Kin. 33, 182–190.

    Google Scholar 

  • Pöschl, U., von Kuhlmann, R., Poisson, N., and Crutzen, P. J., 2000: Development and intercomparison of condensed isoprene oxidation mechanisms for global atmospheric modelling, J. Atmos.Chem. 37, 29–52.

    Google Scholar 

  • Pouli, A. E., Hatzinikolaou, D. G., Piperi, C., Stavridou, A., Psallidopoulos, M. C., and Stavrides, J.C., 2003: The cytotoxic effect of volatile organic compounds of the gas phase of cigarette smoke on lung epithelial cells, Free Radical Biol. Med. 34, 345–355.

    Google Scholar 

  • Ravishankara, A. R., 1997: Heterogeneous and multiphase chemistry in the troposphere, Science 276, 1058-1045.

    Google Scholar 

  • Reimann, S., Calanca, P., and Hofer, P., 2000: The anthropogenic contribution to isoprene concentrations in a rural atmosphere,Atmos. Environ. 34, 109–115.

    Google Scholar 

  • Rudzinski, K. J. and Pasiuk-Bronikowska, W., 1998: Analysis of rate constants in autoxidation of S(IV) by inhibition method, in U. Schurath, R. Roselieb (eds.), Proceedings of the 2nd Workshop of the EUROTRAC-2 Subproject Chemical Mechanism Development, Karlsruhe 1998, Forschungszentrum Karlsruhe GmbH, Karlsruhe, pp. (APP4) 1–4.

    Google Scholar 

  • Rudzinski, K. J. and Pasiuk-Bronikowska, W., 1999: Consistency of rate constants for reactions of sulphoxy radicals with S(IV), in R. Vogt, G. Axelsdottir (eds.), Proceedings of the EC/EUROTRAC-2 Joint Workshop EC Cluster: "Chemical Processes and Mechanisms", EUROTRAC-2 "Chemical Mechanism Development", Aachen 1999, Ford Forschungszentrum Aachen, Aachen, pp. 199–202.

    Google Scholar 

  • Rudzinski, K. J. and Pasiuk-Bronikowska, W., 2000: Inhibition of SO2 oxidation in aqueous phase, Works Stud. Inst. Environ. Eng P.A.S. 54, 175–191.

    Google Scholar 

  • Rudzinski, K. J. and Pasiuk-Bronikowska, W., 2001: Isoprene inhibition of S(IV) autoxidation initiated by peroxydisulphate, in P. M. Midgley, M. Reuther, M. Williams (eds.), Transport and Chemical Transformation in the Troposphere, Proceedings of the EUROTRAC-2 Symposium 2000, Garmisch-Partenkirchen 2000, Springer-Verlag, Berlin, pp. 1–4 (CD).

    Google Scholar 

  • Rudzinski, K. J., Pasiuk-Bronikowska, W., and Krolik, J., 2000: Mechanistic study of isoprene inhibition of S(IV) autoxidation in aqueous phase, M. J. Rossi, E.-M. Rossi (eds.), Proceedings of the EC/EUROTRAC-2 Joint Workshop EC Cluster 4: "Chemical Processes and Mechanisms", EUROTRAC-2 "Chemical Mechanism Development", Lausanne 2000, EPFL, Lausanne, pp. 148–151.

    Google Scholar 

  • Rudzinski, K. J., Bronikowski, T., and Pasiuk-Bronikowska, W., 2001: Laboratory studies of aqueous-phase interactions of troposphere SO2 and organic pollutants, in J. P. Lay, K. H. Becker, W. Hauthal, B. Rindone and C. Zetsch (eds.), Atmospheric Diagnostics in Urban Regions: Results from an International Workshop (Initiativen zum Umveltschutz; Bd. 33), Erich Schmidt Verlag, Berlin, pp. 32–42.

    Google Scholar 

  • Rudzinski, K. J., Pasiuk-Bronikowska, W., and Królik, J., 2002a: Interactions of isoprene with aqueous phase sulphur species-Kinetic effects, in J. Hjorth, F. Raes, G. Angeletti (eds.), A Changing Atmosphere, Proceedings of the 8th European Symposium on Behaviour of Atmospheric Pollutants,Torino 2001, European Commission, Brussels, pp. 1–5 (CD).

    Google Scholar 

  • Rudzinski, K. J., Pasiuk-Bronikowska W., and Królik, J., 2002b: Chemical interactions of precursors of tropospheric aerosols-SO2 and isoprene, in P. M. Midgley, M. Reuther (eds.), Transport and Chemical Transformation in the Troposphere, Proceedings of the EUROTRAC-2 Symposium 2002,Garmisch-Partenkirchen 2002, Margraf Verlag, Weikersheim, Backhuys Publishers, Leiden, pp. (CMD-13) 1–5 (CD).

    Google Scholar 

  • Ruppert, L. and Becker, K. H., 2000: A product study of the OH radical-initiated oxidation of isoprene: Formation of C5-unsaturated diols, Atmos. Environ. 34, 1529–1542.

    Google Scholar 

  • Sander, R., 1999: Compilation of Henry's Lawconstants for inorganic and organic species of potential importance in environmental chemistry, http://www.mpch-mainz.mpg.de/sander/res/henry.html, accessed on 4th Dec. 2003.

  • Shallcross, D. E. and Monks P. S., 2000: New Directions: A role for isoprene in biosphere-climatechemistry feedbacks, Atmos. Environ. 34, 1659–1660.

    Google Scholar 

  • Stockwell, W. R., Kirchner, F., and Kuhn, M., 1997: A new mechanism for regional atmospheric chemistry modelling, J. Geophys. Res. (D) 102, 25847–25879.

    Google Scholar 

  • Strekowski, R., Remorov, R., Rousse, D., and George, Ch., 2002: Bulk and interfacial reactivity of selected radicals, in P. M. Midgley, M. Reuther (eds.), Transport and Chemical Transformation in the Troposphere, Proceedings of the EUROTRAC-2 Symposium 2002,Garmisch-Partenkirchen 2002, Margraf Verlag, Weikersheim, Backhuys Publishers, Leiden, pp. (CMD-14) 1–4 (CD).

    Google Scholar 

  • von Kuhlmann, R., Lawrence, M. G., Pöschl, U., and Crutzen, P. J., 2003: Sensitivities in global scale modelling of isoprene, Atmos. Chem. Phys. Discuss. 3, 3094–3134.

    Google Scholar 

  • Werner, G., Kastler, J., Looser, R., and Ballschmiter, K., 1999: Organic nitrates as atmospheric trace compounds, Angew. Chem. Int. Ed. 38, 1634–1637.

    Google Scholar 

  • Wolkoff, P. and Nielsen, G. D., 2001: Organic compounds in indoor air-Their relevance for perceived indoor air quality? Atmos. Environ. 35, 4407–4417.

    Google Scholar 

  • Ziajka, J. and Pasiuk-Bronikowska,W., 2003: Autoxidation of sulphur dioxide in the presence of alcohols under conditions relevant to the tropospheric aqueous phase, Atmos. Environ. 37, 3913–3922.

    Google Scholar 

  • Ziajka, J. and Warneck, P., 1993: Oxidation of manganese(II) by the sulphate radical ion, in P.M. Borrell, P. Borrell, T. Cvitas, W. Seiler (eds.), Photo-Oxidants: Precursors and Products, Proceedings of the Eurotrac Symposium '92, Garmisch-Partenkirchen 1992, SPB Academic Publishing bv, The Haque, pp. 581–584.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudzinski, K.J. Degradation of Isoprene in the Presence of Sulphoxy Radical Anions. Journal of Atmospheric Chemistry 48, 191–216 (2004). https://doi.org/10.1023/B:JOCH.0000036851.98523.ef

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCH.0000036851.98523.ef

Navigation