Skip to main content

Advertisement

Log in

Detection of Brain Tumors and Systemic Metastases Using NanoLuc and Fluc for Dual Reporter Imaging

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Bioluminescence imaging (BLI) is a technique with a low background noise and high sensitivity which is widely used in mice models in oncology. We aimed to assess BLI efficiency of the new luciferase NanoLuc (Nluc) for glioblastoma cell lines and tumors, including for dual reporter applications of deep brain tumors and systemic metastasis when combined with firefly luciferase (Fluc).

Procedures

U87 cells were genetically modified for constitutive production of either Nluc, Fluc, or both and assayed for luciferase activity and BLI on cell lysates, living cells, subcutaneous tumors, brain tumors, and systemic metastases.

Results

In vitro, light production by Nluc activity is higher than Fluc. In vivo, Nluc allows for tumor detection including for deep brain tumors and systemic metastases.

Conclusions

Nluc appears to be a useful tool to combine with Fluc for dual imaging in vivo using bioluminescence, allowing for the detection of distinct events in deep tissues within the same organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Greer LF, Szalay AA (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17:43–74

    Article  CAS  PubMed  Google Scholar 

  2. Close DM, Xu T, Sayler GS, Ripp S (2011) In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals. Sensors 11:180–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Badr CE, Tannous BA (2011) Bioluminescence imaging: progress and applications. Trends Biotechnol 29:624–633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Contag PR, Olomu IN, Stevenson DK, Contag CH (1998) Bioluminescent indicators in living mammals. Nat Med 4:245–247

    Article  CAS  PubMed  Google Scholar 

  5. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128

    Article  CAS  PubMed  Google Scholar 

  6. Fortin P-Y, Genevois C, Koenig A et al (2012) Detection of brain tumors using fluorescence diffuse optical tomography and nanoparticles as contrast agents. J Biomed Opt 17:126004

    Article  PubMed  Google Scholar 

  7. Bhaumik S, Gambhir SS (2002) Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci 99:377–382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Tannous BA (2009) Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo. Nat Protoc 4:582–591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Adams ST, Miller SC (2014) Beyond D-luciferin: expanding the scope of bioluminescence imaging in vivo. Curr Opin Chem Biol 21:112–120

    Article  CAS  PubMed  Google Scholar 

  10. Branchini BR, Southworth TL, Khattak NF et al (2005) Red- and green-emitting firefly luciferase mutants for bioluminescent reporter applications. Anal Biochem 345:140–148

    Article  CAS  PubMed  Google Scholar 

  11. Loening AM, Dragulescu-Andrasi A, Gambhir SS (2010) A red-shifted Renilla luciferase for transient reporter-gene expression. Nat Methods 7:5–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Otto-Duessel M, Khankaldyyan V, Gonzalez-Gomez I et al (2006) In vivo testing of Renilla luciferase substrate analogs in an orthotopic murine model of human glioblastoma. Mol Imaging 5:57–64

    PubMed  Google Scholar 

  13. Evans MS, Chaurette JP, Adams ST Jr et al (2014) A synthetic luciferin improves bioluminescence imaging in live mice. Nat Methods 11:393–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hall MP, Unch J, Binkowski BF et al (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7:1848–1857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. He S-X, Song G, Shi J-P et al (2014) Nanoluciferase as a novel quantitative protein fusion tag: application for overexpression and bioluminescent receptor-binding assays of human leukemia inhibitory factor. Biochimie 106:140–148

    Article  CAS  PubMed  Google Scholar 

  16. Stacer AC, Nyati S, Moudgil P et al (2013) NanoLuc reporter for dual luciferase imaging in living animals. Mol Imaging 12:1–13

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Patrick Salaun from Promega-France for the gift of plasmid and furimazine, Dr. Benoit Rousseau, Dr. Pierre Costet, and Laetitia Medan for rearing and taking care of mice.

Funding

This study was supported by Labex TRAIL (ANR-10-LABX-57) and Conseil regional Aquitaine.

Conflict of Interest

The authors have declared no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Couillaud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Germain-Genevois, C., Garandeau, O. & Couillaud, F. Detection of Brain Tumors and Systemic Metastases Using NanoLuc and Fluc for Dual Reporter Imaging. Mol Imaging Biol 18, 62–69 (2016). https://doi.org/10.1007/s11307-015-0864-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0864-2

Key words

Navigation