Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Shedding light onto live molecular targets

Optical sensing of specific molecular targets and pathways deep inside living mice has become possible as a result of a number of advances. These include design of biocompatible near-infrared fluorochromes, development of targeted and activatable 'smart' imaging probes, engineered photoproteins and advances in photon migration theory and reconstruction. Together, these advances will provide new tools making it possible to understand more fully the functioning of protein networks, diagnose disease earlier and speed along drug discovery.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of light with tissue.
Figure 2: Fluorescence molecular tomography.
Figure 3: NIR fluorescence imaging.
Figure 4: Bioluminescence imaging.

References

  1. Pham, T.H. et al. Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging. Appl. Opt. 39, 6487–6497 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Farkas, D.L. & Becker, D. Applications of spectral imaging: detection and analysis of human melanoma and its precursors. Pigment Cell Res. 14, 2–8 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Zonios, G., Bykowski, J. & Kollias, N. Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J. Invest. Dermatol. 117, 1452–1457 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Gratton, G. & Fabiani, M. Shedding light on brain function: the event-related optical signal. Trends Cogn. Sci. 5, 357–363 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Vanzetta, I. & Grinvald, A. Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science 286, 1555–1558 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Piston, D.W., Masters, B.R. & Webb, W.W. Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy. J. Microsc. 178, 20–27 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Franceschini, M.A. et al. Frequency-domain techniques enhance optical mammography: initial clinical results. Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Villringer, A. & Chance, B. Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 20, 435–442 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Benaron, D.A. et al. Noninvasive functional imaging of human brain using light. J. Cerebral Blood Flow Metab. 20, 469–477 (2000).

    Article  CAS  Google Scholar 

  10. Boas, D.A. et al. Imaging the body with diffuse optical tomography. IEEE Signal Processing Mag. 18, 57–75 (2001).

    Article  Google Scholar 

  11. Pogue, B.W. et al. Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast. Radiology 218, 261–266 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Ntziachristos, V. & Chance, B. Probing physiology and molecular function using optical imaging: applications to breast cancer. Breast Cancer Res. 3, 41–46 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Ntziachristos, V., Yodh, A.G., Schnall, M. & Chance, B. MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions. Neoplasia 4, 347–354 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Alfano, R.R. et al. Time-resolved and nonlinear optical imaging for medical applications. Ann. NY Acad. Sci. 838, 14–28 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Demos, S.G., Radousky, H.B. & Alfano, R.R. Deep subsurface imaging in tissues using spectral and polarization filtering. Optics Express 7, 23–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Dunn, A.K., Bolay, T., Moskowitz, M.A. & Boas, D.A. Dynamic imaging of cerebral blood flow using laser speckle. J. Cerebral Blood Flow Metabol. 21, 195–201 (2001).

    Article  CAS  Google Scholar 

  17. Tearney, G. et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037–2039 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Brown, E.B. et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat. Med. 7, 864–868 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Muller, M.G., Georgakoudi, I., Zhang, Q., Wu, J. & Feld, M.S. Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption. Appl. Opt. 40, 4633–4646 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Williams, R.M., Zipfel, W.R. & Webb, W.W. Multiphoton microscopy in biological research. Curr. Opin. Chem. Biol. 5, 603–608 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalez, S., Rajadhyaksha, M., Gonzalez-Serva, A., White, W.M. & Anderson, R.R. Confocal reflectance imaging of folliculitis in vivo: correlation with routine histology. J. Cutan. Pathol. 26, 201–205 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Ito, S. et al. Detection of human gastric cancer in resected specimens using a novel infrared fluorescent anti-human carcinoembryonic antigen antibody with an infrared fluorescence endoscope in vitro. Endoscopy 33, 849–853 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Marten, K. et al. Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice. Gastroenterology 122, 406–414 (2002).

    Article  PubMed  Google Scholar 

  24. Kuroiwa, T., Kajimoto, Y. & Ohta, T. Development and clinical application of near-infrared surgical microscope: preliminary report. Minim. Invasive Neurosurg. 44, 240–242 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Richards-Kortum, R. & Sevick-Muraca, E. Quantitative optical spectroscopy for tissue diagnosis. Annu. Rev. Physical Chem. 47, 555–606 (1996).

    Article  CAS  Google Scholar 

  26. Wang, T.D. et al. In vivo identification of colonic dysplasia using fluorescence endoscopic imaging. Gastrointest. Endosc. 49, 447–455 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Mahmood, U., Tung, C.H., Bogdanov, A., Jr. & Weissleder, R. Near-infrared optical imaging of protease activity for tumor detection. Radiology 213, 866–870 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Ntziachristos, V., Tung, C., Bremer, C. & Weissleder, R. Fluorescence-mediated tomography resolves protease activity in vivo. Nat. Med. 8, 575–560 (2002).

    Article  CAS  Google Scholar 

  29. Ntziachristos, V. & Weissleder, R. Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media. Med. Phys. 29, 803–809 (2002).

    Article  PubMed  Google Scholar 

  30. Hawrysz, D.J. & Sevick-Muraca, E.M. Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents. Neoplasia 2, 388–417 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ntziachristos, V., Yodh, A.G., Schnall, M. & Chance, B. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Achilefu, S., Dorshow, R.B., Bugaj, J.E. & Rajagopalan, R. Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. Invest. Radiol. 35, 479–485 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Licha, K. et al. Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes. Bioconjug. Chem. 12, 44–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Becker, A. et al. Receptor-targeted optical imaging of tumors with near-infrared flurorescent ligands. Nat. Biotechnol. 19, 327–331 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Tung, C.H., Lin, Y., Moon, W. & Weissleder, R. Receptor-targeted near-infrared fluorescence probe for in vivo tumor detection. ChemBioChem 3, 784–786 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Ballou, B. et al. Tumor labeling in vivo using cyanine-conjugated monoclonal antibodies. Cancer Immunol. Immunother. 41, 257–263 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Neri, D. et al. Targeting by affinity-matured recombinant antibody fragments on an angiogenesis-associated fibronectin isoform. Nat. Biotechnol. 15, 1271–1275 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Muguruma, N. et al. Antibodies labeled with fluorescence-agent excitable by infrared rays. J. Gastroenterol. 33, 467–471 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Folli, S. et al. Antibody–indocyanin conjugates for immunophotodetection of human squamous cell carcinoma in nude mice. Cancer Res. 54, 2643–2649 (1994).

    CAS  PubMed  Google Scholar 

  40. Zaheer, A. et al. In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat. Biotechnol. 19, 1148–1154 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Weissleder, R., Tung, C.H., Mahmood, U. & Bogdanov, A., Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17, 375–378 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Tung, C.H., Mahmood, U., Bredow, S. & Weissleder, R. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res. 60, 4953–4958 (2000).

    CAS  PubMed  Google Scholar 

  43. Bogdanov, A.A., Jr., Lin, C.P., Simonova, M., Matuszewski, L. & Weissleder, R. Cellular activation of the self-quenched fluorescent reporter probe in tumor microenvironment. Neoplasia 4, 228–236 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bremer, C., Tung, C.H. & Weissleder, R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat. Med. 7, 743–748 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Slakter, J.S., Yannuzzi, L.A., Guyer, D.R., Sorenson, J.A. & Orlock, D.A. Indocyanine-green angiography. Curr. Opin. Ophthalmol. 6, 25–32 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Hope-Ross, M. et al. Adverse reactions due to indocyanine green. Ophthalmology 101, 529–533 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Riefke, B., Licha, K., Semmler, W., Nolte, D. & Rinneberg, H. In vivo characterization of cyanine dyes as contrast agents for near-infrared imaging. SPIE 2927, 199–208 (1996).

    CAS  Google Scholar 

  48. Licha, K. et al. Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem. Photobiol. 72, 392–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Lin, Y., Weissleder, R. & Tung, C.H. Novel near-infrared cyanine fluorochromes: synthesis, properties, and bioconjugation. Bioconjug. Chem. 13, 605–610 (2002).

    Article  PubMed  CAS  Google Scholar 

  50. Matz, M.V. et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17, 969–973 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Gurskaya, N.G. et al. GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Lett. 507, 16–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Labas, Y.A. et al. Diversity and evolution of the green fluorescent protein family. Proc. Natl. Acad. Sci. USA 99, 4256–4261 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hoffman, R.M. Visualization of GFP-expressing tumors and metastasis in vivo. Biotechniques 30, 1016–1022, 1024–1026 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Yang, M. et al. Whole-body optical imaging of green fluorescent protein–expressing tumors and metastases. Proc. Natl. Acad. Sci. USA 97, 1206–1211 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moore, A., Sergeyev, N., Bredow, S. & Weissleder, R. A model system to quantitate tumor burden in locoregional lymph nodes during cancer spread. Invasion Metastasis 18, 192–197 (1998).

    Article  PubMed  Google Scholar 

  56. Wunderbaldinger, P., Josephson, L., Bremer, C., Moore, A. & Weissleder, R. Detection of lymph node metastases by contrast-enhanced MRI in an experimental model. Magn. Reson. Med. 47, 292–297 (2002).

    Article  PubMed  Google Scholar 

  57. Yang, M., Baranov, E., Moossa, A.R., Penman, S. & Hoffman, R.M. Visualizing gene expression by whole-body fluorescence imaging. Proc. Natl. Acad. Sci. USA 97, 12278–12282 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fukumura, D. et al. Tumor induction of VEGF promoter activity in stromal cells. Cell 94, 715–725 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Moore, A., Marecos, E., Simonova, M., Weissleder, R. & Bogdanov, A., Jr. Novel gliosarcoma cell line expressing green fluorescent protein: a model for quantitative assessment of angiogenesis. Microvasc. Res. 56, 145–153 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Hastings, J.W. Chemistries and colors of bioluminescent reactions: a review. Gene 173, 5–11 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Contag, C.H., Jenkins, D., Contag, P.R. & Negrin, R.S. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2, 41–52 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Contag, C.H. et al. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem. Photobiol. 66, 523–531 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Contag, C.H. & Stevenson, D.K. In vivo patterns of heme oxygenase-1 transcription. J. Perinatol. 21 (Suppl. 1), S119–124; discussion S125–127 (2001).

    Article  PubMed  Google Scholar 

  64. Contag, P., Olomu, I., Stevenson, D. & Contag, C. Bioluminescent indicators in living mammals. Nat. Med. 4, 245–247 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Bhaumik, S. & Gambhir, S.S. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc. Natl. Acad. Sci. USA 99, 377–382 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Wetterwald, A. et al. Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am. J. Pathol. 160, 1143–1153 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Costa, G.L. et al. Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T-cell delivery of the IL-12 p40 subunit. J. Immunol. 167, 2379–2387 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Burns, S.M. et al. Revealing the spatiotemporal patterns of bacterial infectious diseases using bioluminescent pathogens and whole body imaging. Contrib. Microbiol. 9, 71–88 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Weng, Y.H., Tatarov, A., Bartos, B.P., Contag, C.H. & Dennery, P.A. HO-1 expression in type II pneumocytes after transpulmonary gene delivery. Am. J. Physiol. Lung Cell Mol. Physiol. 278, L1273–1279 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Wu, J.C., Sundaresan, G., Iyer, M. & Gambhir, S.S. Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol. Ther. 4, 297–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Honigman, A. et al. Imaging transgene expression in live animals. Mol. Ther. 4, 239–249 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, W. et al. Rapid in vivo functional analysis of transgenes in mice using whole body imaging of luciferase expression. Transgenic Res. 10, 423–434 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Vooijs, M., Jonkers, J., Lyons, S. & Berns, A. Noninvasive imaging of spontaneous retinoblastoma pathway-dependent tumors in mice. Cancer Res. 62, 1862–1867 (2002).

    CAS  PubMed  Google Scholar 

  74. Ray, P. et al. Noninvasive quantitative imaging of protein–protein interactions in living subjects. Proc. Natl. Acad. Sci. USA 99, 3105–3110 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Carlsen, H., Moskaug, J.O., Fromm, S.H. & Blomhoff, R. In vivo imaging of NF-κB activity. J. Immunol. 168, 1441–1446 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Louie, A.Y. et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotechnol. 18, 321–325 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Moats, R.A., Fraser, S.E. & Meade, T.J. A “smart” magnetic resonance imaging agent that reports on specific enzymatic activity. Angew. Chem. Int. Edn. Engl. 36, 726–731 (1997).

    Article  CAS  Google Scholar 

  78. Bogdanov, A., Matuszewski, L., Bremer, C., Petrovsky, A. & Weissleder, R. Oligomerization of paramagnetic substrates result in signal amplification and can be used for MR imaging of molecular targets. Molec. Imag. 1, 1–9 (2002).

    Article  Google Scholar 

  79. Josephson, L., Perez, J. & Weissleder, R. Magnetic nanosensors for the detection of oligonucleotide sequences. Angew. Chem. Int. Edn. Engl. 40, 3204–3206 (2001).

    Article  CAS  Google Scholar 

  80. Perez, J.M., O'Loughin, T., Simeone, F.J., Weissleder, R. & Josephson, L. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J. Am. Chem. Soc. 124, 2856–2857 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Perez, J.M., Josephson, L., O'Loughin, T., Hogeman, D. & Weissleder, R. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20, 816–820 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Josephson, L., Kircher, M.F., Mahmood, U., Tang, Y. & Weissleder, R. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug. Chem. 13, 554–560 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Huber, M.M. et al. Fluorescently detectable magnetic resonance imaging agents. Bioconjug. Chem. 9, 242–249 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Georgakoudi, I., Mueller, M.G. & Feld, M.S. Intrinsic fluorescence spectroscopy of biological tissue in Fluorescence in Biomedicine (Marcel Dekker, New York, 2002).

    Google Scholar 

  85. Ji, H. et al. Arthritis critically dependent on innate immune system players. Immunity 16, 157–168 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Weissleder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weissleder, R., Ntziachristos, V. Shedding light onto live molecular targets. Nat Med 9, 123–128 (2003). https://doi.org/10.1038/nm0103-123

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0103-123

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing