Skip to main content
Log in

Transgenic expression of coat protein gene of Rice tungro bacilliform virus in rice reduces the accumulation of viral DNA in inoculated plants

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Rice tungro, a devastating disease of rice in south and southeast Asia, is caused by the joint infection of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV). In order to obtain transgenic resistance against RTBV, indica rice cultivar Pusa Basmati-1 was transformed to express the coat protein (CP) gene of an Indian isolate of RTBV. Rice plants containing the transgene integrated in low copy numbers were obtained, in which the CP was shown to accumulate in the leaf tissue. The progenies representing three independent transformation events were challenged with Indian isolates of RTBV using viruliferous Green leafhoppers, and the viral titers in the inoculated plants were monitored using DNA dot-blot hybridization. As compared to non-transgenic controls, two independent transgenic lines showed significantly low levels of RTBV DNA, especially towards later stages of infection and a concomitant reduction of tungro symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.W. Herdt, in Rice Biotechnology, ed. by G.S. Khush, G.H. Toennissen (CAB International, Wallingford, UK, 1991), pp. 19–54

    Google Scholar 

  2. R. Hull, Matthews’ Plant Virology (Academic Press, London, 2002)

    Google Scholar 

  3. M. Jones, K. Gough, I. Dasgupta, B.L. Subba Rao, J. Cliffe, R. Qu, P. Shen, M. Kaniewska, M. Blakebrough, J.W. Davies, R.N. Beachy, R. Hull, J. Gen. Virol. 72, 757–761 (1991). doi:https://doi.org/10.1099/0022-1317-72-4-757

    Article  CAS  Google Scholar 

  4. P.Q. Cabauatan, H. Hibino, Philipp. Phytopathol. 21, 103–109 (1985)

    Google Scholar 

  5. H. Hibino, N. Saleh, M. Roechan, Phytopathology 69, 1266–1268 (1979). doi:https://doi.org/10.1094/Phyto-69-1266

    Article  Google Scholar 

  6. J.M. Hay, M.C. Jones, M.L. Blakebrough, I. Dasgupta, J.W. Davies, R. Hull, Nucleic Acids Res. 19, 2615–2621 (1991). doi:https://doi.org/10.1093/nar/19.10.2615

    Article  CAS  Google Scholar 

  7. R. Qu, M. Bhattacharyya, G.S. Laco, A. deKochko, B.L. Subba Rao, M.B. Kaniewska, S.J. Elmer, D.E. Rochester, C.E. Smith, R.N. Beachy, Virology 185, 354–364 (1991). doi:https://doi.org/10.1016/0042-6822(91)90783-8

    Article  CAS  Google Scholar 

  8. P. Marmey, B. Bothner, E. Jacquot, A. deKochko, C.A. Ong, P. Yot, G. Siuzdak, R.N. Beachy, C.M. Fauquet, Virology 253, 319–326 (1999). doi:https://doi.org/10.1006/viro.1998.9519

    Article  CAS  Google Scholar 

  9. G.S. Laco, S.B.H. Kent, R.N. Beachy, Virology 208, 207–214 (1995). doi:https://doi.org/10.1006/viro.1995.1144

    Article  CAS  Google Scholar 

  10. Z. Fan, G. Dahal, I. Dasgupta, J. Hay, R. Hull, J. Gen. Virol. 77, 847–854 (1996). doi:https://doi.org/10.1099/0022-1317-77-5-847

    Article  CAS  Google Scholar 

  11. N. Nath, S. Mathur, I. Dasgupta, Arch. Virol. 147, 1173–1187 (2002). doi:https://doi.org/10.1007/s00705-002-0801-y

    Article  CAS  Google Scholar 

  12. K. Muralidharan, D. Krishnaveni, N.V.L. Rajarajeshwari, A.S.R. Prasad, Curr. Sci. 85, 1143–1147 (2003)

    Google Scholar 

  13. P. Powell-Abel, R.S. Nelson, B. De, N. Hoffman, S.G. Rogers, R.T. Fraley, R.N. Beachy, Science 232, 738–743 (1986). doi:https://doi.org/10.1126/science.3457472

    Article  Google Scholar 

  14. A. Germundsson, M. Sandgren, H. Barker, E.I. Savenkov, J.P. Valkonen, J. Gen. Virol. 83, 1201–1209 (2002)

    Article  CAS  Google Scholar 

  15. T. Malinowski, M. Cambra, N. Capote, B. Zawadzka, M.T. Gorris, R. Scorza, M. Ravelonandro, Plant Dis. 90, 1012–1018 (2006). doi:https://doi.org/10.1094/PD-90-1012

    Article  CAS  Google Scholar 

  16. F. Trevisan, B.F.J. Mendes, F.C. Maciel, M.L.C. Vieira, L.M.M. Meletti, J.M.M. Rezende, Plant Dis. 90, 1026–1030 (2006). doi:https://doi.org/10.1094/PD-90-1026

    Article  CAS  Google Scholar 

  17. P. Chellappan, R. Vanitharani, C. Fauquet, J. Virol. 78, 7465–7477 (2004). doi:https://doi.org/10.1128/JVI.78.14.7465-7477.2004

    Article  CAS  Google Scholar 

  18. M.K. Abhary, G.H. Anfoka, M.K. Nakhla, D.P. Maxwell, Arch. Virol. 151, 2349–2363 (2006). doi:https://doi.org/10.1007/s00705-006-0819-7

    Article  CAS  Google Scholar 

  19. K. Bonfim, J.C. Faria, E.O. Nogueira, E.A. Mendes, F.J. Araga˜o, Mol. Plant Microbe Interact. 20, 717–726 (2007). doi:https://doi.org/10.1094/MPMI-20-6-0717

    Article  CAS  Google Scholar 

  20. H. Tyagi, S. Rajasubramaniam, M.V. Rajam, I. Dasgupta, Transgenic Res. 17, 897–904 (2008). doi:https://doi.org/10.1007/s11248-008-9174-7

    Article  CAS  Google Scholar 

  21. S.Z. Pang, P. Nagpala, M. Wang, J.L. Slightom, D. Gonsalves, Mol. Plant Pathol. 82, 1223–1229 (1992)

    CAS  Google Scholar 

  22. A.M. Vaira, L. Semeria, S. Crespi, V. Lisa, A. Allavena, G.P. Accotto, Mol. Plant Microbe Interact. 8, 66–73 (1995)

    Article  CAS  Google Scholar 

  23. F. Schwach, G. Adam, C. Heinze, Mol. Plant Pathol. 5, 309–316 (2004). doi:https://doi.org/10.1111/j.1364-3703.2004.00229.x

    Article  CAS  Google Scholar 

  24. P. De Haan, J.J.L. Gielen, M. Prins, I.G. Wijkamp, A. van Schepen, D. Peters, M.Q.J.M. van Grinsven, R. Goldbach, Bio/Technology 10, 1133–1137 (1992)

    PubMed  Google Scholar 

  25. M. Prins, M. Laimer, E. Noris, J. Schubert, M. Wassenegger, M. Tepfer, Mol. Plant Pathol. 9, 73–83 (2008)

    CAS  PubMed  Google Scholar 

  26. W.P. Chen, X. Gu, G.H. Liang, S. Muthukrishnan, P.D. Chen, D.J. Liu, B.S. Gill, Theor. Appl. Genet. 97, 1296–1306 (1998). doi:https://doi.org/10.1007/s001220051022

    Article  CAS  Google Scholar 

  27. R. Hofgen, L. Willmitzer, Nucleic Acids Res. 16, 9877 (1988). doi:https://doi.org/10.1093/nar/16.20.9877

    Article  CAS  Google Scholar 

  28. R. Kumria, B. Waie, M.V. Rajam, Plant Cell Tiss. Org. Cult. 67, 63–71 (2001). doi:https://doi.org/10.1023/A:1011645315304

    Article  CAS  Google Scholar 

  29. S.L. Dellaporta, J. Wood, J.B. Hicks, Plant Mol. Biol. Rep. 1, 19–21 (1983). doi:https://doi.org/10.1007/BF02712670

    Article  CAS  Google Scholar 

  30. J. Sambrook, D.W. Russel, Molecular Cloning—A laboratory Manual (Cold Spring Harbor Press, Cold Spring Harbor, New York, 2001)

    Google Scholar 

  31. P. Chomczynski, N. Sacchi, Anal. Biochem. 162, 156–159 (1987). doi:https://doi.org/10.1016/0003-2697(87)90021-2

    Article  CAS  Google Scholar 

  32. U.K. Laemmli, Nature 227, 680–685 (1970). doi:https://doi.org/10.1038/227680a0

    Article  CAS  Google Scholar 

  33. M. Bradford, Anal. Biochem. 72, 248–250 (1976). doi:https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  34. V. Verma, I. Dasgupta, Arch. Virol. 152, 645–648 (2007). doi:https://doi.org/10.1007/s00705-006-0861-5

    Article  CAS  Google Scholar 

  35. O. Azzam, A. Klöti, F. Sta Cruz, J. Fϋtterer, E.L. Coloquio, I. Potrykus, R. Hull, in Rice Tungro Disease Management, ed. by T.C.B. Chancellor, O. Azzam, H. Leong. Proceedings of International Workshop on Tungro Disease Management, 9–11 November, 1998 (International Rice Research Institute, Makati City, Philippines, 1998), pp. 39–44

  36. O. Azzam, T.C.B. Chancellor, Plant Dis. 86, 88–100 (2002). doi:https://doi.org/10.1094/PDIS.2002.86.2.88

    Article  CAS  Google Scholar 

  37. L.C. Villegas, A. Druka, N.B. Bajet, R. Hull, Virus Genes 15, 195–201 (1997). doi:https://doi.org/10.1023/A:1007927002275

    Article  CAS  Google Scholar 

  38. R. Joshi, V. Kumar, I. Dasgupta, J. Virol. Methods 109, 89–93 (2003). doi:https://doi.org/10.1016/S0166-0934(02)00290-2

    Article  CAS  Google Scholar 

  39. F.R. Niazi, I. Dasgupta, J. Singh, S. Mathur, A. Varma, Indian Phytopathol. 58, 308–313 (2005)

    Google Scholar 

  40. F.C. Sta Cruz, R. Hull, O. Azzam, Arch. Virol. 148, 1465–1583 (2003). doi:https://doi.org/10.1007/s00705-003-0117-6

    Article  CAS  Google Scholar 

  41. G. Moissard, O. Voinnet, Proc. Natl. Acad. Sci. USA 103, 19593–19598 (2006). doi:https://doi.org/10.1073/pnas.0604627103

    Article  Google Scholar 

  42. S. Dai, X. Wei, A.A. Alfonso, L. Pei, U.G. Duque, Z. Zhang, G.M. Babb, R.N. Beachy, Proc. Natl. Acad. Sci. USA 105, 21012–21016 (2008). doi:https://doi.org/10.1073/pnas.0810303105

    Article  CAS  Google Scholar 

  43. F.G. Ratcliff, S.A. MacFarlane, D.C. Baulcombe, Plant Cell 11, 1207–1215 (1999)

    Article  CAS  Google Scholar 

  44. O. Voinnet, Nat. Rev. Genet. 6, 206–220 (2005). doi:https://doi.org/10.1038/nrg1555

    Article  CAS  Google Scholar 

  45. A.J. Love, J. Laird, J. Holt, A.J. Hamilton, A. Sadanandom, J.J. Milner, J. Gen. Virol. 88, 3439–3444 (2007). doi:https://doi.org/10.1099/vir.0.83090-0

    Article  CAS  Google Scholar 

  46. E. Sivamani, H. Huet, P. Shen, C.A. Ong, A. deKocho, C. Fauquet, R.N. Beachy, Mol. Breed. 5, 177–185 (1999). doi:https://doi.org/10.1023/A:1009633816713

    Article  CAS  Google Scholar 

  47. H. Huet, S. Mahendra, J. Wang, E. Sivamani, C.A. Ong, L. Chen, A. deKochko, R.N. Beachy, C. Fauquet, Phytopathology 89, 1022–1027 (1999). doi:https://doi.org/10.1094/PHYTO.1999.89.11.1022

    Article  CAS  Google Scholar 

  48. P. Saha, I. Dasgupta, S. Das, Plant Mol. Biol. 62, 735–752 (2006). doi:https://doi.org/10.1007/s11103-006-9054-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the expert technical assistance of Anand Singh Rana and efficient maintenance of plants and insects by Trilok Singh Rawat. This work was supported by grants from Department of Biotechnology, Government of India, New Delhi, to I.D. and M.V.R. (Grant no. BT/AB/NP/07/98). U.G. is grateful to Council of Scientific and Industrial Research, New Delhi, for the award of senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Dasgupta.

Electronic supplementary material

11262_2009_359_MOESM1_ESM.pdf

Supplementary material 1 Absolute values of RTBV DNA levels expressed as densitometric readings of dot-blot hybridization using total DNA isolated from inoculated untransformed control and CP-60 transgenic plants taken at different days post-inoculation (PDF 22 kb)

11262_2009_359_MOESM2_ESM.pdf

Supplementary material 2 DNA from inoculated untransformed and transgenic rice plants used for dot-blot stained with methylene blue (left panel) and the same probed with RTBV DNA representing RT-RNase H region (right panel). C indicates DNA from untransformed control plants and T, transgenic line CP60. The numbers at the left indicate the days post-inoculation (dpi) at which the DNAs were extracted (PDF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganesan, U., Suri, S.S., Rajasubramaniam, S. et al. Transgenic expression of coat protein gene of Rice tungro bacilliform virus in rice reduces the accumulation of viral DNA in inoculated plants. Virus Genes 39, 113–119 (2009). https://doi.org/10.1007/s11262-009-0359-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-009-0359-9

Keywords

Navigation