Skip to main content

Advertisement

Log in

Melatonin Attenuates Manganese and Lipopolysaccharide-Induced Inflammatory Activation of BV2 Microglia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Melatonin, a naturally occurring neurohormone in the pineal gland, has been shown to exert antioxidant and anti-inflammatory effects. This study examined the effects of melatonin on manganese (Mn) and/or lipopolysaccharide (LPS)-induced microglial activation. Melatonin (10 μM) inhibited Mn (100 μM) and/or LPS (0.5 μg/ml)-induced phagocytotic activity of activated BV2 microglia. It also inhibited the lipid peroxidation and intracellular reduced glutathione (GSH) depletion induced by Mn and/or LPS. Melatonin effectively suppressed the upregulation of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) at both mRNA and protein levels in Mn and/or LPS-stimulated BV2 microglia. In addition, melatonin pretreatment attenuated Mn and/or LPS-induced degradation of IκB-α, nuclear translocation of nuclear factor-κB (NF-κB) and its activation, and the expressions of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in BV2 microglial cells. These results suggest that melatonin can effectively modulate phagocytosis and expression of proinflammatory mediators, and can prevent neuroinflammatory disorders accompanied by microglial activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2:734–744

    Article  CAS  PubMed  Google Scholar 

  2. Nguyen MD, Julien JP, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3:216–227

    Article  CAS  PubMed  Google Scholar 

  3. Zheng Z, Yenari MA (2004) Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurol Res 26:884–892

    Article  CAS  PubMed  Google Scholar 

  4. Tansey MG, Frank-Cannon TC, McCoy MK, Lee JK, Martinez TN, McAlpine FE, Ruhn KA, Tran TA (2008) Neuroinflammation in Parkinson’s disease: is there sufficient evidence for mechanism-based interventional therapy? Front Biosci 13:709–717

    Article  CAS  PubMed  Google Scholar 

  5. Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7:31–40

    Article  CAS  PubMed  Google Scholar 

  6. Varvel NH, Jiang J, Dingledine R (2015) Candidate drug targets for prevention or modification of epilepsy. Annu Rev Pharmacol Toxicol 55:229–247

    Article  CAS  PubMed  Google Scholar 

  7. Liu B, Wang K, Gao HM, Mandavilli B, Wang JY, Hong JS (2001) Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J Neurochem 77:182–189

    Article  CAS  PubMed  Google Scholar 

  8. Quan Y, Jiang J, Dingledine R (2013) EP2 receptor signaling pathways regulate classical activation of microglia. J Biol Chem 288:9293–9302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dey A, Kang X, Qiu J, Du Y, Jiang J (2016) Anti-inflammatory small molecules to treat seizures and epilepsy: from bench to bedside. Trends Pharmacol Sci 37:463–484

    Article  CAS  PubMed  Google Scholar 

  10. Gayle DA, Ling Z, Tong C, Landers T, Lipton JW, Carvey PM (2002) Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: roles of tumor necrosis factor-alpha, interleukin-1beta, and nitric oxide. Brain Res Dev Brain Res 133:27–35

    Article  CAS  PubMed  Google Scholar 

  11. Ruano D, Revilla E, Gavilan MP, Vizuete ML, Pintado C, Vitorica J, Castano A (2006) Role of p38 and inducible nitric oxide synthase in the in vivo dopaminergic cells’ degeneration induced by inflammatory processes after lipopolysaccharide injection. Neuroscience 140:1157–1168

    Article  CAS  PubMed  Google Scholar 

  12. Herrera AJ, Castano A, Venero JL, Cano J, Machado A (2000) The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis 7:429–447

    Article  CAS  PubMed  Google Scholar 

  13. Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20:6309–6316

    CAS  PubMed  Google Scholar 

  14. Aschner M, Guilarte TR, Schneider JS, Zheng W (2007) Manganese: recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol 221:131–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Filipov NM, Seegal RF, Lawrence DA (2005) Manganese potentiates in vitro production of proinflammatory cytokines and nitric oxide by microglia through a nuclear factor kappa B-dependent mechanism. Toxicol Sci 84:139–148

    Article  CAS  PubMed  Google Scholar 

  16. Zhang P, Lokuta KM, Turner DE, Liu B (2010) Synergistic dopaminergic neurotoxicity of manganese and lipopolysaccharide: differential involvement of microglia and astroglia. J Neurochem 112:434–443

    Article  CAS  PubMed  Google Scholar 

  17. Chang JY, Liu LZ (1999) Manganese potentiates nitric oxide production by microglia. Brain Res Mol Brain Res 68:22–28

    Article  CAS  PubMed  Google Scholar 

  18. Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22:1763–1771

    CAS  PubMed  Google Scholar 

  19. Gao HM, Liu B, Zhang W, Hong JS (2003) Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol Sci 24:395–401

    Article  CAS  PubMed  Google Scholar 

  20. Sairam K, Saravanan KS, Banerjee R, Mohanakumar KP (2003) Non-steroidal anti-inflammatory drug sodium salicylate, but not diclofenac or celecoxib, protects against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats. Brain Res 966:245–252

    Article  CAS  PubMed  Google Scholar 

  21. Reiter RJ, Manchester LC, Tan DX (2010) Neurotoxins: free radical mechanisms and melatonin protection. Curr Neuropharmacol 8:194–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wong CS, Jow GM, Kaizaki A, Fan LW, Tien LT (2014) Melatonin ameliorates brain injury induced by systemic lipopolysaccharide in neonatal rats. Neuroscience 267:147–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seabra ML, Bignotto M, Pinto LR Jr, Tufik S (2000) Randomized, double-blind clinical trial, controlled with placebo, of the toxicology of chronic melatonin treatment. J Pineal Res 29:193–200

    Article  CAS  PubMed  Google Scholar 

  24. Leston J, Harthe C, Brun J, Mottolese C, Mertens P, Sindou M, Claustrat B (2010) Melatonin is released in the third ventricle in humans. A study in movement disorders. Neurosci Lett 469:294–297

    Article  CAS  PubMed  Google Scholar 

  25. Crittenden PL, Filipov NM (2008) Manganese-induced potentiation of in vitro proinflammatory cytokine production by activated microglial cells is associated with persistent activation of p38 MAPK. Toxicol In Vitro 22:18–27

    Article  CAS  PubMed  Google Scholar 

  26. Laurenzi MA, Arcuri C, Rossi R, Marconi P, Bocchini V (2001) Effects of microenvironment on morphology and function of the microglial cell line BV-2. Neurochem Res 26:1209–1216

    Article  CAS  PubMed  Google Scholar 

  27. Jones P, Gardner L, Menage J, Williams GT, Roberts S (2008) Intervertebral disc cells as competent phagocytes in vitro: implications for cell death in disc degeneration. Arthritis Res Ther 10:R86

    Article  PubMed  PubMed Central  Google Scholar 

  28. Singh J, Kaur G (2006) HSP70 induction and oxidative stress protection mediated by a subtoxic dose of NMDA in the retinoic acid-differentiated C6 glioma cell line. Brain Res Bull 69:37–47

    Article  CAS  PubMed  Google Scholar 

  29. Chun HS, Low WC (2012) Ursodeoxycholic acid suppresses mitochondria-dependent programmed cell death induced by sodium nitroprusside in SH-SY5Y cells. Toxicology 292:105–112

    Article  CAS  PubMed  Google Scholar 

  30. Kim YS, Joh TH (2006) Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 38:333–347

    Article  CAS  PubMed  Google Scholar 

  31. Deng Y, Zhu J, Mi C, Xu B, Jiao C, Li Y, Xu D, Liu W, Xu Z (2015) Melatonin antagonizes Mn-induced oxidative injury through the activation of keap1-Nrf2-ARE signaling pathway in the striatum of mice. Neurotox Res 27:156–171

    Article  CAS  PubMed  Google Scholar 

  32. Liu B (2006) Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson’s disease. AAPS J 8:E606–E621

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li Q, Verma IM (2002) NF-kappa B regulation in the immune system. Nat Rev Immunol 2:725–734

    Article  CAS  PubMed  Google Scholar 

  34. Harvey KA, Walker CL, Xu Z, Whitley P, Pavlina TM, Hise M, Zaloga GP, Siddiqui RA (2010) Oleic acid inhibits stearic acid-induced inhibition of cell growth and pro-inflammatory responses in human aortic endothelial cells. J Lipid Res 51:3470–3480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang Y, Chen WA (2015) Biochanin A inhibits lipopolysaccharide-induced inflammatory cytokines and mediators production in BV2 microglia. Neurochem Res 40:165–171

    Article  CAS  PubMed  Google Scholar 

  36. Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F (1990) Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 27:229–237

    Article  CAS  PubMed  Google Scholar 

  37. Shie FS, Montine KS, Breyer RM, Montine TJ (2005) Microglial EP2 as a new target to increase amyloid beta phagocytosis and decrease amyloid beta-induced damage to neurons. Brain Pathol 15:134–138

    Article  CAS  PubMed  Google Scholar 

  38. Sun HN, Jin MH, Han B, Feng L, Han YH, Shen GN, Yu YZ, Jin CH, Lian ZX, Lee DS, Kim SU, Ge WZ, Cui YD (2014) 16 alpha, 17 alpha-Epoxypregnenolone-20-oxime prevent LPS-induced NO production and iNOS expression in BV-2 microglial cells by inhibiting JNK phosphorylation. Biol Pharm Bull 37:1096–1102

    Article  CAS  PubMed  Google Scholar 

  39. Neher JJ, Neniskyte U, Zhao JW, Bal-Price A, Tolkovsky AM, Brown GC (2011) Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J Immunol 186:4973–4983

    Article  CAS  PubMed  Google Scholar 

  40. Sun HN, Kim SU, Lee MS, Kim SK, Kim JM, Yim M, Yu DY, Lee DS (2008) Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent activation of phosphoinositide 3-kinase and p38 mitogen-activated protein kinase signal pathways is required for lipopolysaccharide-induced microglial phagocytosis. Biol Pharm Bull 31:1711–1715

    Article  CAS  PubMed  Google Scholar 

  41. Abd El-Gawad HM, Khalifa AE (2001) Quercetin, coenzyme Q10, and l-canavanine as protective agents against lipid peroxidation and nitric oxide generation in endotoxin-induced shock in rat brain. Pharmacol Res 43:257–263

    Article  CAS  PubMed  Google Scholar 

  42. Baydas G, Gursu MF, Yilmaz S, Canpolat S, Yasar A, Cikim G, Canatan H (2002) Daily rhythm of glutathione peroxidase activity, lipid peroxidation and glutathione levels in tissues of pinealectomized rats. Neurosci Lett 323:195–198

    Article  CAS  PubMed  Google Scholar 

  43. Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36:1–9

    Article  CAS  PubMed  Google Scholar 

  44. Banks WA, Farr SA, Morley JE (2002) Entry of blood-borne cytokines into the central nervous system: effects on cognitive processes. Neuroimmunomodulation 10:319–327

    Article  CAS  PubMed  Google Scholar 

  45. Zhao F, Cai T, Liu M, Zheng G, Luo W, Chen J (2009) Manganese induces dopaminergic neurodegeneration via microglial activation in a rat model of manganism. Toxicol Sci 107:156–164

    Article  CAS  PubMed  Google Scholar 

  46. Wang HY, Wang H, Wang JH, Wang Q, Ma QF, Chen YY (2015) Protocatechuic acid inhibits inflammatory responses in LPS-stimulated BV2 Microglia via NF-kappaB and MAPKs signaling pathways. Neurochem Res 40:1655–1660

    Article  CAS  PubMed  Google Scholar 

  47. Liu B, Gao HM, Hong JS (2003) Parkinson’s disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation. Environ Health Perspect 111:1065–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jun CD, Choi BM, Kim HM, Chung HT (1995) Involvement of protein kinase C during taxol-induced activation of murine peritoneal macrophages. J Immunol 154:6541–6547

    CAS  PubMed  Google Scholar 

  49. Ding K, Wang H, Xu J, Lu X, Zhang L, Zhu L (2014) Melatonin reduced microglial activation and alleviated neuroinflammation induced neuron degeneration in experimental traumatic brain injury: possible involvement of mTOR pathway. Neurochem Int 76:23–31

    Article  CAS  PubMed  Google Scholar 

  50. Janssen-Heininger YM, Poynter ME, Baeuerle PA (2000) Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappa B. Free Radic Bio Med 28:1317–1327

    Article  CAS  Google Scholar 

  51. Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61:71–90

    Article  PubMed  Google Scholar 

  52. Filipov NM, Dodd CA (2012) Role of glial cells in manganese neurotoxicity. J Appl Toxicol 32:310–317

    Article  CAS  PubMed  Google Scholar 

  53. Huang BR, Tsai CF, Lin HY, Tseng WP, Huang SS, Wu CR, Lin C, Yeh WL, Lu DY (2013) Interaction of inflammatory and anti-inflammatory responses in microglia by Staphylococcus aureus-derived lipoteichoic acid. Toxicol Appl Pharmacol 269:43–50

    Article  CAS  PubMed  Google Scholar 

  54. Su X, Chen Q, Chen W, Chen T, Li W, Li Y, Dou X, Zhang Y, Shen Y, Wu H, Yu C (2014) Mycoepoxydiene inhibits activation of BV2 microglia stimulated by lipopolysaccharide through suppressing NF-kappaB, ERK 1/2 and toll-like receptor pathways. Int Immunopharmacol 19:88–93

    Article  CAS  PubMed  Google Scholar 

  55. Chen CJ, Ou YC, Lin SY, Liao SL, Chen SY, Chen JH (2006) Manganese modulates pro-inflammatory gene expression in activated glia. Neurochem Int 49:62–71

    Article  CAS  PubMed  Google Scholar 

  56. Gebicke-Haerter PJ (2001) Microglia in neurodegeneration: molecular aspects. Microsc Res Tech 54:47–58

    Article  CAS  PubMed  Google Scholar 

  57. Barhoumi R, Faske J, Liu X, Tjalkens RB (2004) Manganese potentiates lipopolysaccharide-induced expression of NOS2 in C6 glioma cells through mitochondrial-dependent activation of nuclear factor kappa B. Brain Res Mol Brain Res 122:167–179

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported by research funds from Chosun University (2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Sung Chun.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, E., Chun, H.S. Melatonin Attenuates Manganese and Lipopolysaccharide-Induced Inflammatory Activation of BV2 Microglia. Neurochem Res 42, 656–666 (2017). https://doi.org/10.1007/s11064-016-2122-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2122-7

Keywords

Navigation