Skip to main content
Log in

Effects of Microenvironment on Morphology and Function of the Microglial Cell Line BV-2

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Effects of microenvironmental changes were examined in the microglial cell line BV-2. In serum supplemented medium cells were ameboid shaped and exhibited thin cytoplasmatic processes at lower concentration or in absence of serum. High levels of acetylated low-density lipoprotein (LDL) receptor and of phagocytic and proliferative activity were detected. Lipopolysaccharide (LPS) and the neuropeptide substance P (SP) induced secretion of interleukin-6. Low interleukin-3 secretion was detected only occasionally and was not influenced by LPS and SP. In defined medium, “process-bearing” cells were evident. Compared to cultures in serum supplemented medium, the cells expressed lower acetylated LDL-binding and phagocytic activity while actively proliferated, the response to LPS was reduced and to SP absent. Granulocyte/macrophage colony-stimulating factor increased the number of process-bearing cells, of acetylated LDL-binding and of IL-6 secretion induced by LPS. Cell morphology was not influenced by neurotrophins like nerve growth factor and brain-derived neurotrophic factor. The described phenotypical and functional plasticity makes the BV-2 cell line a useful model to investigate mechanisms of microglial activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Rio Hortega, P. 1932. Microglia. Pages 481–584, in W. Penfield (ed.), Cytology and Cellular Pathology of the Nervous System. Hoeber, New York, vol. 2.

    Google Scholar 

  2. Perry, V. H. and Gordon, S. 1988. Macrophages and microglia in the nervous system. TINS 11:273–277.

    Google Scholar 

  3. Ling, E. A. and Wong, W. C. 1993. The origin and nature of ramified and ameboid microglia: A historical review and current concepts. Glia 7:9–18.

    Google Scholar 

  4. Fedoroff, S. 1995. Development of microglia. Pages 162–181, In Kettenmann, H., and Ransom, B. R., (eds), Neuroglia. Oxford University Press, New York.

    Google Scholar 

  5. Nakajima, K. and Kohsaka, S. 1993. Functional roles of microglial in the brain. Neurosci. Res. 17:187–203.

    Google Scholar 

  6. Kreutzberg, G. W. 1996. Microglia: a sensor for pathological events in the CNS. TINS 19:312–318.

    Google Scholar 

  7. Banati, R. B., Gehrmann, J., Schubert, P., and Kretzberg, G. W. 1993. Cytotoxicity of microglia. Glia 7:111–118.

    Google Scholar 

  8. Davis, E. J., Foster, T. D., and Thomas, V. E. 1994. Cellular forms and functions of brain microglia. Brain Res. Bull. 34:73–78.

    Google Scholar 

  9. Neumann, H., Misgeld, T., Matsumuro, K., and Wekerle, H. 1998. Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor. Proc. Natl. Acad. Sci. USA 95:5779–5784.

    Google Scholar 

  10. Batchelor, P. E., Liberatore, G. T., Wong, J. Y. F., Porrit, M. J., Frerichs, F., Donnan, G. A., and Howells, D. W. 1999. Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J. Neuroscience 19:1708–1716.

    Google Scholar 

  11. Elkabes, S., Di Cicco-Bloom, E. M., and Black, I. B. 1996. Brain microglia/macrophages express neurotrophins that selectively regulate microglia proliferation and function. J. Neuroscience 16:2508–2521.

    Google Scholar 

  12. Heese, K., Hock, C., and Otten, U. 1998. Inflammatory signals induce neurotrophin expression in human microglial cells. J. Neurochem. 70:699–707.

    Google Scholar 

  13. Blasi, E., Barluzzi, R., Bocchini, V., Mazzolla, R., and Bistoni, F. 1990. Immortalization of murine microglial cells by a v-raf/ v-myc carrying retrovirus. J. Neuroimmunol. 27:229–237.

    Google Scholar 

  14. Bocchini, V., Mazzolla, R., Barluzzi, R., Blasi, E., Sick, P., and Kettenmann, H. 1992. An immortalized cell line expresses properties of activated microglia cells. J. Neurosci. Res. 31:616–621.

    Google Scholar 

  15. Bottenstein, J. E. and Sato, G. H. 1979. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc. Natl. Acad. Sci. USA 76:514–517.

    Google Scholar 

  16. Giulian, D. and Baker, T. J. 1986. Characterization of ameboid microglia isolated from developing mammalian brain. J. Neuroscience 6:2163–2178.

    Google Scholar 

  17. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55–63.

    Google Scholar 

  18. Campling, B. G., Pym, J., Galbraith, P. R., and Cole, S. P. C. 1988. Use of MTT assay for rapid determination of chemosen-sitivity of human leukemic blast cells. Leukemia Res. 12:823–831.

    Google Scholar 

  19. Price, P. and McMillan, T. J. 1990. Use of the tetrazolium assay in measuring the response of human tumor cells to ionizing radiation. Cancer Res. 50:1392–1396.

    Google Scholar 

  20. Blasi, E., Puliti, M., Pitzurra, L., Mazzolla, R., Adami, C., Cox, G. V., and Bistoni, F. 1994. Comparative studies on functional and secretory properties of macrophage cell line derived from different anatomical size. FEMS Immunol. Med. Mic. 9:207–216.

    Google Scholar 

  21. Wood, P. L., Choksi, S., and Bocchini, V. 1994. Inducible microglial nitric oxide synthase: a large membrane pool. Neuro-Report 5:977–980.

    Google Scholar 

  22. Murphy, G. M. Jr., Jia, X. C., Song, Y., Ong, E., Shrivastava, R., Bocchini, V., Lee, Y. L., and Eng, L. F. 1995. Macrophage inflammatory protein 1-alpha mRNA expression in an immortalized microglial cell line and cortical astrocyte cultures. J. Neurosci. Res. 40:755–763.

    Google Scholar 

  23. Streit, W. J., Graeber, M. B., and Kreutzberg, G. W. 1988. Functional plasticity of microglia: a review. Glia 1:301–307.

    Google Scholar 

  24. Glenn, J. A., Ward, S. A., Stone, C. R., Booth, P. L., and Thomas, V. E. 1992. Characterization of ramified microglia cells: detailed morphology, morphological plasticity and proliferative capability. J. Anat. 180:109–118.

    Google Scholar 

  25. Streit, W. J., Walter, S. A., and Pennell, N. A. 1999. Reactive microgliosis. Progress Neurobiol. 57:563–581.

    Google Scholar 

  26. Giulian, D. and Ingeman, J. E. 1988. Colony-stimulating factors as promotors of ameboid microglia. J. Neurosci. 8:4707–4717.

    Google Scholar 

  27. Suzumura, A., Sawada, M., Yamamoto, H., and Marunouchi, T. 1990. Effects of colony stimulating factors on isolated microglia in vitro. J. Neuroimmunol. 30:111–120.

    Google Scholar 

  28. Gehrmann, J., Matsumoto, Y., and Kreutzberg, G. W. 1995. Microglia: intrinsic immunoeffector cell of the brain. Brain Res. Rev. 20:269–287.

    Google Scholar 

  29. Stollg, G. and Jander, S. 1999. The role of microglia and macrophages in the pathophysiology of the CNS. Progress Neurobiol. 58:233–247.

    Google Scholar 

  30. Hoekfelt, T., Vincent, S., Dalsgaard, C. J., Skirboll, L., Johansson, O., Schultzberg, M., Lundberg, J. M., Rosell, S., Pernow, B., and Jansco, G. 1982. Distribution of substance P in brain and periphery and its possible role as co-transmitter, in Porter, R. and O'Connor, M. (eds) Substance P in the Nervous System. Pitman, London (Ciba Foundation, Symposium 91).

    Google Scholar 

  31. Lembeck, F. and Holzer, P. 1979. Substance P as neurogenic mediator of antidromic plasma extravasation. Naunyn-Schmiedeberg's Arch. Pharmacol. 310:175–183.

    Google Scholar 

  32. Payan, D. G., Brewster, D. R., and Goetzl, E. J. 1984. Specific stimulation of human T lymphocytes by substance P. J. Immunol. 131:1613–1615.

    Google Scholar 

  33. Stanisz, S. Z., Befus, D., and Bienenstock, J. 1986. Differential effects of vasoactive intestinal peptide, substance P and somatostatin on immunoglobulin synthesis and proliferation by lymphocytes from Peyer's patches, mesenteric lymphonodes and spleen. J. Immunol. 136:152–156.

    Google Scholar 

  34. Hartung, H. P., Heininger, K., Schaefer, B., and Toyka, K. V. 1988. Substance P and astrocytes: stimulation of the cyclooxygenase pathway of arachidonic acid metabolism. FASEB J. 2:48–51.

    Google Scholar 

  35. Hartung, H. P. and Toyka, K. V. 1983. Activation of macrophages by substance P: induction of oxidative burst and thromboxane release. Eur. J. Pharmacol. 89:301–305.

    Google Scholar 

  36. Lotz, M., Vaughan, J. H., and Carson, D. A. 1988. Effect of neuropeptides on production of inflammatory cytokines by human monocytes. Sciences 241:1218–1221.

    Google Scholar 

  37. Martin, F. C., Charles, A. C., Sanderson, M. J., and Merrill, J. E. 1992. Substance P stimulates IL-1 production by astrocytes via intracellular calcium. Brain Res. 599:13–18.

    Google Scholar 

  38. Martin, F. C., Anton, P. A., Gornbein, J. A., Shanahan, F., and Merrill, J. E. 1993. Production of interleukin-1 by microglia in response to substance P: role for a nonclassical NK-1 receptor. J. Neuroimmunol. 42:53–60.

    Google Scholar 

  39. Gebicke-Haerter, P. J., Appel, K., Taylor, G. D., Schobert, A., Rich, I. N., Northoff, H., and Berger, M. 1994. Rat microglial interleukin-3. J. Neuroimmunol. 50:203–214.

    Google Scholar 

  40. Estes, M. L., Iwasaki, K., Jacobs, B. S., and Barna, B. P. 1993. Interleukin-4 down-regulates adult human astrocytes DNA synthesis and proliferation. Am. J. Pathol. 143:337–341.

    Google Scholar 

  41. Frei, K., Leist, T. P., Meager, A., Gallo, P., Leppert, D., Zinkernagel, R. M., and Fontana, A. 1988. Production of B cells stimulatory factor-2 and interferon-γ in the central nervous system during viral meningitis and encephalitis. J. Exp. Med. 168: 449–453.

    Google Scholar 

  42. Houssiau, F. A., Busaka, K., Sindic, C. J. M., Van Damme, J., and Van Snick, J. 1988. Elevated levels of the 26 K human hybridoma growth factor (interleukin-6) in cerebrospinal fluid of patients with acute infection of the central nervous system. Clin. Exp. Immunol. 71:320–323.

    Google Scholar 

  43. Laurenzi, M. A., Siden, A., Persson, M. A. A., Norkrans, G., Hagberg, L., and Chiodi, F. 1990. Cerebrospinal fluid interleukin-6 activity in HIV infection and inflammatory and noninflammatory diseases of the nervous system. Clinical Immunol. Immunopathol. 57:233–241.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurenzi, M.A., Arcuri, C., Rossi, R. et al. Effects of Microenvironment on Morphology and Function of the Microglial Cell Line BV-2. Neurochem Res 26, 1209–1216 (2001). https://doi.org/10.1023/A:1013911205494

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013911205494

Navigation