Skip to main content

Advertisement

Log in

Coix seed oil regulates mitochondrial functional damage to induce apoptosis of human pancreatic cancer cells via the PTEN/PI3K/AKT signaling pathway

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Coix seed oil (CSO) has a wide range of anticancer effects. However, the mechanism of action against pancreatic cancer (PC) and regulation of mitochondria in vitro is still unclear.

Materials and results

This research investigated the possible mechanism of CSO induction of PC cell apoptosis and regulating mitochondrial functional damage. Proliferation of PC cells, mitochondrial membrane potential (MMP), qualitative and quantitative analysis of PC cell apoptosis, openness of mitochondrial permeability transition pore, related protein expression, generation of reactive oxygen species (ROS), and gene expression were determined by cell counting kit-8, JC-1 staining, acridine orange and ethidium bromide staining, flow cytometry, calcein-AM/cobalt staining, western blotting, dichlorofluorescein diacetate probe, and quantitative real-time reverse transcription-polymerase chain reaction, respectively. We confirmed that PTEN protein was involved in CSO-induced PANC-1 cell apoptosis and mitochondrial functional damage. CSO induced depolarization of MMP, increased opening of the mitochondrial permeability transition pore, increased ROS production, and further increased mitochondrial damage. Additionally, CSO downregulated expression of p-AKT and p-PI3K proteins; upregulated protein expression of cleaved caspase-9, Bax, cleaved caspase-3 and cytochrome c; and downregulated expression of Bcl-2 by upregulating the PTEN gene. The corresponding protein expression was consistent with the gene expression level. Furthermore, the loss of function of PTEN protein reduces the ability of CSO to induce apoptosis of PANC-1 cells and damage to mitochondrial function.

Conclusions

CSO induces apoptosis of PANC-1 PC cells by modulating mitochondrial functional impairment and related apoptotic molecules via PTEN, which may be closely related to the PI3K/AKT signaling pathway.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All datasets for the analysis in the present study are available upon reasonable request to the corresponding author.

References

  1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  2. Panji M, Behmard V, Zare Z, Malekpour M, Nejadbiglari H, Yavari S, Nayerpour Dizaj T, Safaeian A, Maleki N, Abbasi M, Abazari O, Shabanzadeh M, Khanicheragh P (2021) Suppressing effects of green tea extract and Epigallocatechin-3-gallate (EGCG) on TGF-β- induced Epithelial-to-mesenchymal transition via ROS/Smad signaling in human cervical cancer cells. Gene 794:145774. https://doi.org/10.1016/j.gene.2021.145774

    Article  CAS  PubMed  Google Scholar 

  3. Rana P, Shrama A, Mandal CC (2021) Molecular insights into phytochemicals-driven break function in tumor microenvironment. J Food Biochem 45(9):e13824. https://doi.org/10.1111/jfbc.13824

    Article  CAS  PubMed  Google Scholar 

  4. Zhan YP, Huang XE, Cao J, Lu YY, Wu XY, Liu J, Xu X, Xiang J, Ye LH (2012) Clinical safety and efficacy of Kanglaite® (Coix Seed Oil) injection combined with chemotherapy in treating patients with gastric cancer. Asian Pac J Cancer Prev 13(10):5319–5321. https://doi.org/10.7314/apjcp.2012.13.10.5319

    Article  PubMed  Google Scholar 

  5. Mao W, Fan Y, Cheng C, Yuan X, Lan T, Mao K, Wang J (2020) Efficacy and safety of Kanglaite injection combined with chemotherapy for colorectal cancer: A protocol for systematic review and meta-analysis. Med (Baltim) 99(39):e22357. https://doi.org/10.1097/md.0000000000022357

    Article  CAS  Google Scholar 

  6. Liu J, Yu L, Ding W (2019) Efficacy and safety of Kanglaite injection combined with radiochemotherapy in the treatment of advanced pancreatic cancer: A PRISMA-compliant meta-analysis. Med (Baltim) 98(32):e16656. https://doi.org/10.1097/md.0000000000016656

    Article  CAS  Google Scholar 

  7. Liu J, Liu X, Ma J, Li K, Xu C (2019) The clinical efficacy and safety of kanglaite adjuvant therapy in the treatment of advanced hepatocellular carcinoma: A PRISMA-compliant meta-analysis. Biosci Rep 39(11):23. https://doi.org/10.1042/bsr20193319

    Article  CAS  Google Scholar 

  8. Wen J, Yang T, Wang J, Ma X, Tong Y, Zhao Y (2020) Kanglaite Injection Combined with Chemotherapy versus Chemotherapy Alone for the Improvement of Clinical Efficacy and Immune Function in Patients with Advanced Non-Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis. Evid Based Complement Alternat Med 2020:8586596. https://doi.org/10.1155/2020/8586596

    Article  PubMed  PubMed Central  Google Scholar 

  9. Falasca M, Selvaggi F, Buus R, Sulpizio S, Edling CE (2011) Targeting phosphoinositide 3-kinase pathways in pancreatic cancer–from molecular signalling to clinical trials. Anticancer Agents Med Chem 11(5):455–463. https://doi.org/10.2174/187152011795677382

    Article  CAS  PubMed  Google Scholar 

  10. Ebrahimi S, Hosseini M, Shahidsales S, Maftouh M, Ferns GA, Ghayour-Mobarhan M, Hassanian SM, Avan A (2017) Targeting the Akt/PI3K Signaling Pathway as a Potential Therapeutic Strategy for the Treatment of Pancreatic Cancer. Curr Med Chem 24(13):1321–1331. https://doi.org/10.2174/0929867324666170206142658

    Article  CAS  PubMed  Google Scholar 

  11. Abate M, Festa A, Falco M, Lombardi A, Luce A, Grimaldi A, Zappavigna S, Sperlongano P, Irace C, Caraglia M, Misso G (2020) Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol 98:139–153. https://doi.org/10.1016/j.semcdb.2019.05.022

    Article  CAS  PubMed  Google Scholar 

  12. Yang H, Villani RM, Wang H, Simpson MJ, Roberts MS, Tang M, Liang X (2018) The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res 37(1):266. https://doi.org/10.1186/s13046-018-0909-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yen YP, Tsai KS, Chen YW, Huang CF, Yang RS, Liu SH (2012) Arsenic induces apoptosis in myoblasts through a reactive oxygen species-induced endoplasmic reticulum stress and mitochondrial dysfunction pathway. Arch Toxicol 86(6):923–933. https://doi.org/10.1007/s00204-012-0864-9

    Article  CAS  PubMed  Google Scholar 

  14. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. https://doi.org/10.1146/annurev.arplant.55.031903.141701

    Article  PubMed  Google Scholar 

  15. Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258(5 Pt 1):C755–C786. https://doi.org/10.1152/ajpcell.1990.258.5.C755

    Article  CAS  PubMed  Google Scholar 

  16. Zorov DB, Isaev NK, Plotnikov EY, Zorova LD, Stelmashook EV, Vasileva AK, Arkhangelskaya AA, Khrjapenkova TG (2007) The mitochondrion as janus bifrons. Biochem (Mosc) 72(10):1115–1126. https://doi.org/10.1134/s0006297907100094

    Article  CAS  Google Scholar 

  17. Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin SA, Petit PX, Mignotte B, Kroemer G (1995) Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182(2):367–377. https://doi.org/10.1084/jem.182.2.367

    Article  CAS  PubMed  Google Scholar 

  18. Kinnally KW, Peixoto PM, Ryu SY, Dejean LM (2011) Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim Biophys Acta 1813(4):616–622. https://doi.org/10.1016/j.bbamcr.2010.09.013

    Article  CAS  PubMed  Google Scholar 

  19. Lindsay J, Esposti MD, Gilmore AP (2011) Bcl-2 proteins and mitochondria–specificity in membrane targeting for death. Biochim Biophys Acta 1813(4):532–539. https://doi.org/10.1016/j.bbamcr.2010.10.017

    Article  CAS  PubMed  Google Scholar 

  20. Peña-Blanco A, García-Sáez AJ (2018) Bax, Bak and beyond - mitochondrial performance in apoptosis. Febs j 285(3):416–431. https://doi.org/10.1111/febs.14186

    Article  CAS  PubMed  Google Scholar 

  21. Kulikov AV, Shilov ES, Mufazalov IA, Gogvadze V, Nedospasov SA, Zhivotovsky B (2012) Cytochrome c: the Achilles’ heel in apoptosis. Cell Mol Life Sci 69(11):1787–1797. https://doi.org/10.1007/s00018-011-0895-z

    Article  CAS  PubMed  Google Scholar 

  22. Creagh EM, Martin SJ (2001) Caspases: cellular demolition experts. Biochem Soc Trans 29(Pt 6):696–702. https://doi.org/10.1042/0300-5127:0290696

    Article  CAS  PubMed  Google Scholar 

  23. Rohlenova K, Neuzil J, Rohlena J (2016) The role of Her2 and other oncogenes of the PI3K/AKT pathway in mitochondria. Biol Chem 397(7):607–615. https://doi.org/10.1515/hsz-2016-0130

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Zhang W, Wang XJ, Liu S (2014) Antitumor effect of Kanglaite® injection in human pancreatic cancer xenografts. BMC Complement Altern Med 14:228. https://doi.org/10.1186/1472-6882-14-228

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang C, Hou A, Yu C, Dai L, Wang W, Zhang K, Shao H, Ma J, Xu W (2018) Kanglaite reverses multidrug resistance of HCC by inducing apoptosis and cell cycle arrest via PI3K/AKT pathway. Onco Targets Ther 11:983–996. https://doi.org/10.2147/ott.S153814

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fang T, Jiang YX, Chen L, Huang L, Tian XH, Zhou YD, Nagle DG, Zhang DD (2020) Coix Seed Oil Exerts an Anti-Triple-Negative Breast Cancer Effect by Disrupting miR-205/S1PR1 Axis. Front Pharmacol 11:529962. https://doi.org/10.3389/fphar.2020.529962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu Y, Sun XJ, Xiao Y, Liu S, Zhao J, Qin W (2019) PTEN is involved in Kanglaite (R) injection-induced apoptosis of human pancreatic cancer cells. Int J Clin Exp Med 12(2):1658–1665

    CAS  Google Scholar 

  28. Adamska A, Elaskalani O, Emmanouilidi A, Kim M, Abdol Razak NB, Metharom P, Falasca M (2018) Molecular and cellular mechanisms of chemoresistance in pancreatic cancer. Adv Biol Regul 68:77–87. https://doi.org/10.1016/j.jbior.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  29. Zeng S, Pöttler M, Lan B, Grützmann R, Pilarsky C, Yang H (2019) Chemoresistance in Pancreatic Cancer. Int J Mol Sci 20(18):4504. https://doi.org/10.3390/ijms20184504

    Article  CAS  PubMed Central  Google Scholar 

  30. Liu S, Xu ZL, Sun L, Liu Y, Li CC, Li HM, Zhang W, Li CJ, Qin W (2016) (–)–Epigallocatechin–3–gallate induces apoptosis in human pancreatic cancer cells via PTEN. Mol Med Rep 14(1):599–605. https://doi.org/10.3892/mmr.2016.5277

    Article  CAS  PubMed  Google Scholar 

  31. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95(1):29–39. https://doi.org/10.1016/s0092-8674(00)81780-8

    Article  CAS  PubMed  Google Scholar 

  32. Lu Y, Li CS, Dong Q (2008) Chinese herb related molecules of cancer-cell-apoptosis: a minireview of progress between Kanglaite injection and related genes. J Exp Clin Cancer Res 27(1):31. https://doi.org/10.1186/1756-9966-27-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao YJ, Fan JP (2021) The Effect of Kanglaite Injection on Apoptosis of Colon Cancer SW480 Cells and Expression of Apoptosis-Related Factors. Pakistan J Zool 53(1):379–382. https://doi.org/10.17582/journal.pjz/20191119131142

    Article  CAS  Google Scholar 

  34. Fu Y, Ricciardiello F, Yang G, Qiu J, Huang H, Xiao J, Cao Z, Zhao F, Liu Y, Luo W, Chen G, You L, Chiaradonna F, Zheng L, Zhang T (2021) The Role of Mitochondria in the Chemoresistance of Pancreatic Cancer Cells. Cells 10(3):497. https://doi.org/10.3390/cells10030497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chipuk JE, Green DR (2008) How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18(4):157–164. https://doi.org/10.1016/j.tcb.2008.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Danial NN (2007) BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res 13(24):7254–7263. https://doi.org/10.1158/1078-0432.Ccr-07-1598

    Article  CAS  PubMed  Google Scholar 

  37. Fadeel B, Orrenius S (2005) Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med 258(6):479–517. https://doi.org/10.1111/j.1365-2796.2005.01570.x

    Article  CAS  PubMed  Google Scholar 

  38. Yokoyama C, Sueyoshi Y, Ema M, Mori Y, Takaishi K, Hisatomi H (2017) Induction of oxidative stress by anticancer drugs in the presence and absence of cells. Oncol Lett 14(5):6066–6070. https://doi.org/10.3892/ol.2017.6931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12(12):931–947. https://doi.org/10.1038/nrd4002

    Article  CAS  PubMed  Google Scholar 

  40. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94(3):909–950. https://doi.org/10.1152/physrev.00026.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192(7):1001–1014. https://doi.org/10.1084/jem.192.7.1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5(5):415–418. https://doi.org/10.1023/a:1009616228304

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Qiqihar Academy of Medical Sciences (Grant Number QMSI2019M-12), and thanks to the Third Affiliated Hospital of Qiqihar Medical University for funding this research.

Author information

Authors and Affiliations

Authors

Contributions

JY: conceptualization, methodology, software, validation, and writing—original draft preparation; YL: formal analysis and resources; S-NL: investigation and data curation; X-JS: software; YY: investigation and data curation; K-FW: conceptualization, formal analysis, and supervision; SL: project administration, funding application, and writing—review & editing and supervision; All authors reviewed the paper and approved the submitted version.

Corresponding author

Correspondence to Shi Liu.

Ethics declarations

Conflict of interest

The authors declare no confict of interest.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Liu, Y., Lu, S. et al. Coix seed oil regulates mitochondrial functional damage to induce apoptosis of human pancreatic cancer cells via the PTEN/PI3K/AKT signaling pathway. Mol Biol Rep 49, 5897–5909 (2022). https://doi.org/10.1007/s11033-022-07371-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07371-8

Keywords

Navigation