Skip to main content
Log in

Phosphoproteomics of cold stress-responsive mechanisms in Rhododendron chrysanthum

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

As an alpine plant, Rhododendron chrysanthum (R. chrysanthum) has evolved cold resistance mechanisms and become a valuable plant resource with the responsive mechanism of cold stress.

Methods and results

We adopt the phosphoproteomic and proteomic analysis combining with physiological measurement to illustrate the responsive mechanism of R. chrysanthum seedling under cold (4 °C) stress. After chilling for 12 h, 350 significantly changed proteins and 274 significantly changed phosphoproteins were detected. Clusters of Orthologous Groups (COG) analysis showed that significantly changed phosphoproteins and proteins indicated cold changed energy production and conversion and signal transduction.

Conclusions

The results indicated photosynthesis was inhibited under cold stress, but cold induced calcium-mediated signaling, reactive oxygen species (ROS) homeostasis and other transcription regulation factors could protect plants from the destruction caused by cold stress. These data provide the insight to the cold stress response and defense mechanisms of R. chrysanthum leaves at the phosphoproteome level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ALDH:

NAD(P) + −  dependent aldehyde dehydrogenases

CaM-BP:

CaM-binding protein

CaM:

Calcium

CAT:

Catalase

COG:

Clusters of Orthologous Groups of proteins

MAP3K:

Epsilon protein kinase 1

NDPK2:

Nucleoside diphosphate kinase 2 protein kinase

OEC:

Photosystem II oxygen evolving complex

POD:

Peroxidase

SOD:

Superoxide dismutase

TMT Labeling:

Tandem mass tags labeling

STP:

Serine/threonine-protein kinase

References

  1. Song JB, Gao S, Wang Y et al (2016) miR394 and its target gene LCR are involved in cold stress response in Arabidopsis. Plant Gene 5:56–64. https://doi.org/10.1016/j.plgene.2015.12.001

    Article  CAS  Google Scholar 

  2. Orvar BL, Sangwan V, Omann F et al (2000) Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23:785–794. https://doi.org/10.1046/j.1365-313x.2000.00845.x

    Article  CAS  PubMed  Google Scholar 

  3. Ding Y, Shi Y, Yang S (2019) Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol 222:1690–1704. https://doi.org/10.1111/nph.15696

    Article  PubMed  Google Scholar 

  4. Huang W, Zhang S-B, Cao K-F (2010) The different effects of chilling stress under moderate light intensity on photosystem II compared with photosystem I and subsequent recovery in tropical tree species. Photosynth Res 103:175–182. https://doi.org/10.1007/s11120-010-9539-7

    Article  CAS  PubMed  Google Scholar 

  5. Janmohammadi M, Zolla L, Rinalducci S (2015) Low temperature tolerance in plants: Changes at the protein level. Phytochemistry 117:76–89. https://doi.org/10.1016/j.phytochem.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  6. Wilkins KA, Matthus E, Swarbreck SM et al (2016) Calcium-mediated abiotic stress signaling in roots. Front Plant Sci 7:1296. https://doi.org/10.3389/fpls.2016.01296

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yuan P, Yang T, Poovaiah BW (2018) Calcium signaling-mediated plant response to cold stress. IJMS 19:3896. https://doi.org/10.3390/ijms19123896

    Article  CAS  PubMed Central  Google Scholar 

  8. Gill MB, Zeng F, Shabala L et al (2019) Identification of QTL related to ROS formation under hypoxia and their association with waterlogging and salt tolerance in Barley. Int J Mol Sci. https://doi.org/10.3390/ijms20030699

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mittler R, Vanderauwera S, Gollery M et al (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498. https://doi.org/10.1016/j.tplants.2004.08.009

    Article  CAS  PubMed  Google Scholar 

  10. Kamal MM, Ishikawa S, Takahashi F et al (2020) Large-scale phosphoproteomic study of arabidopsis membrane proteins reveals early signaling events in response to cold. Int J Mol Sci. https://doi.org/10.3390/ijms21228631

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rampitsch C, Bykova NV (2012) The beginnings of crop phosphoproteomics: exploring early warning systems of stress. Front Plant Sci 3:144. https://doi.org/10.3389/fpls.2012.00144

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hsu C-C, Zhu Y, Arrington JV et al (2018) Universal plant phosphoproteomics workflow and its application to tomato signaling in response to cold stress. Mol Cell Proteomics 17:2068–2080. https://doi.org/10.1074/mcp.TIR118.000702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pi Z, Zhao M-L, Peng X-J et al (2017) Phosphoproteomic analysis of paper mulberry reveals phosphorylation functions in chilling tolerance. J Proteome Res 16:1944–1961. https://doi.org/10.1021/acs.jproteome.6b01016

    Article  CAS  PubMed  Google Scholar 

  14. Lu Z-S, Chen Q-S, Zheng Q-X et al (2019) Proteomic and phosphoproteomic analysis in tobacco mosaic virus-infected tobacco (Nicotiana tabacum). Biomolecules. https://doi.org/10.3390/biom9020039

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhou X, Chen S, Wu H et al (2017) Biochemical and proteomics analyses of antioxidant enzymes reveal the potential stress tolerance in Rhododendron chrysanthum Pall. Biol Direct 12:10. https://doi.org/10.1186/s13062-017-0181-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Singh M (2000) Turnover of D1 Protein Encoded by psbA Gene in Higher Plants and Cyanobacteria Sustains Photosynthetic Efficiency to Maintain Plant Productivity Under Photoinhibitory Irradiance. Photosynthetica 38:161–169. https://doi.org/10.1023/A:1007297227403

    Article  CAS  Google Scholar 

  17. Salonen M, Aro E-M, Rintamäki E (1998) Reversible phosphorylation and turnover of the D1 protein under various redox states of Photosystem II induced by low temperature photoinhibition. Photosynth Res 58:143–151. https://doi.org/10.1023/A:1006155223221

    Article  CAS  Google Scholar 

  18. Koivuniemi A, Aro EM, Andersson B (1995) Degradation of the D1- and D2-proteins of photosystem II in higher plants is regulated by reversible phosphorylation. Biochemistry 34:16022–16029. https://doi.org/10.1021/bi00049a016

    Article  CAS  PubMed  Google Scholar 

  19. Nishiyama Y, Allakhverdiev SI, Yamamoto H et al (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43:11321–11330. https://doi.org/10.1021/bi036178q

    Article  CAS  PubMed  Google Scholar 

  20. Merry R, Jerrard J, Frebault J et al (2017) A comparison of pine and spruce in recovery from winter stress; changes in recovery kinetics, and the abundance and phosphorylation status of photosynthetic proteins during winter. Tree Physiol 37:1239–1250. https://doi.org/10.1093/treephys/tpx065

    Article  CAS  PubMed  Google Scholar 

  21. Grebe S, Trotta A, Bajwa AA et al (2020) Specific thylakoid protein phosphorylations are prerequisites for overwintering of Norway spruce (Picea abies) photosynthesis. Proc Natl Acad Sci U S A 117:17499–17509. https://doi.org/10.1073/pnas.2004165117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Allahverdiyeva Y, Suorsa M, Rossi F et al (2013) Arabidopsis plants lacking PsbQ and PsbR subunits of the oxygen-evolving complex show altered PSII super-complex organization and short-term adaptive mechanisms. Plant J 75:671–684. https://doi.org/10.1111/tpj.12230

    Article  CAS  PubMed  Google Scholar 

  23. Tola AJ, Jaballi A, Germain H et al (2020) Recent development on plant aldehyde dehydrogenase enzymes and their functions in plant development and stress signaling. Genes (Basel). https://doi.org/10.3390/genes12010051

    Article  Google Scholar 

  24. Piattoni CV, Ferrero DML, Dellaferrera I et al (2017) Cytosolic glyceraldehyde-3-phosphate dehydrogenase is phosphorylated during seed development. Front Plant Sci 8:522. https://doi.org/10.3389/fpls.2017.00522

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hsu CH, Hsu YT (2019) Biochemical responses of rice roots to cold stress. Bot Stud 60:14. https://doi.org/10.1186/s40529-019-0262-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qi W, Wang F, Ma L et al (2020) Physiological and biochemical mechanisms and cytology of cold tolerance in brassica napus. Front Plant Sci 11:1241. https://doi.org/10.3389/fpls.2020.01241

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mhamdi A, Queval G, Chaouch S et al (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220. https://doi.org/10.1093/jxb/erq282

    Article  CAS  PubMed  Google Scholar 

  28. Chang T-S, Jeong W, Choi SY et al (2002) Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. J Biol Chem 277:25370–25376. https://doi.org/10.1074/jbc.M110432200

    Article  CAS  PubMed  Google Scholar 

  29. Han F, Chen H, Li X-J et al (2009) A comparative proteomic analysis of rice seedlings under various high-temperature stresses. Biochim Biophys Acta 1794:1625–1634. https://doi.org/10.1016/j.bbapap.2009.07.013

    Article  CAS  PubMed  Google Scholar 

  30. Moon H, Lee B, Choi G et al (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci U S A 100:358–363. https://doi.org/10.1073/pnas.252641899

    Article  CAS  PubMed  Google Scholar 

  31. Andrews C, Xu Y, Kirberger M et al (2020) Structural aspects and prediction of calmodulin-binding proteins. Int J Mol Sci. https://doi.org/10.3390/ijms22010308

    Article  PubMed  PubMed Central  Google Scholar 

  32. Reddy ASN, Ali GS, Celesnik H et al (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032. https://doi.org/10.1105/tpc.111.084988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garg G, Yadav S et al (2015) Key roles of calreticulin and calnexin proteins in plant perception under stress conditions: A review. Advances in Life Sciences 5:18–26

    Google Scholar 

  34. Takemiya A, Sugiyama N, Fujimoto H et al (2013) Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. Nat Commun 4:2094. https://doi.org/10.1038/ncomms3094

    Article  CAS  PubMed  Google Scholar 

  35. Liu H, Wang F-F, Peng X-J et al (2019) Global phosphoproteomic analysis reveals the defense and response mechanisms of jatropha curcas seedling under chilling stress. Int J Mol Sci. https://doi.org/10.3390/ijms20010208

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was mainly supported by the National Natural Science Foundation of China (31070224) and the Science and Technology Department of Jilin Province (20130206059NY).

Author information

Authors and Affiliations

Authors

Contributions

XZ and HX designed the research; YL and HF prepared the plant materials for sequencing. YL carried out bioinformatics analysis of data; YL, HF and JC performed the experiments and statistical analyses; YL and JD collected data and researched literature, YL interpreted the data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hongwei Xu or Xiaofu Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Supplementary file2 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Fan, H., Dong, J. et al. Phosphoproteomics of cold stress-responsive mechanisms in Rhododendron chrysanthum. Mol Biol Rep 49, 303–312 (2022). https://doi.org/10.1007/s11033-021-06874-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06874-0

Keywords

Navigation