Skip to main content
Log in

Inflammation-induced colon cancer in uPA-deficient mice is associated with a deregulated expression of Notch signaling pathway components

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Notch is an evolutionarily conserved signaling pathway with an important role in development and cell fate determination. Deregulation of Notch signaling has been associated with several pathological conditions, including cancer. Acting as an oncogene in some types of cancers and as a tumor suppressor in other, Notch effects seem to be highly context-dependent in solid tumors. In the present study, we aimed to investigate gene expression levels of Notch pathway constituents, including ligands, receptors, and target genes, during the early stages of inflammation-associated intestinal carcinogenesis. To achieve so, we used our recently developed mouse model, in which colon cancer arises in the absence of urokinase-type plasminogen activator (uPA) due to colitis induced by dextran sodium sulfate (DSS) treatment. Among the cell surface components, ligands Jag1/Jag2 and receptors Notch1/Notch2 were found to be significantly upregulated in the uPA-deficient protumorigenic inflammatory microenvironment. Moreover, several intracellular Notch modulators, i.e. Hes1, Hey1, and Klf4, were also shown to be deregulated with inflammation, yet irrespective of uPA status. Sox9 transcription factor, however, was significantly downregulated in the uPA-deficient/DSS-treated mice that developed colon adenomas as compared to the wild-type/DSS-treated group with no neoplasia identified. The latter finding supports a tumor suppressive role of Sox9 in intestinal carcinogenesis. Our results point towards an early activation of Notch signaling pathway at the receptor-ligand level in inflammation-associated colon neoplasmatogenesis developed in the absence of uPA. Interestingly, such activation may not be accompanied by deregulation of downstream Notch-target genes, possibly due to the effects of other inter-related signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689. https://doi.org/10.1038/nrm2009

    Article  CAS  PubMed  Google Scholar 

  2. Ranganathan P, Weaver KL, Capobianco AJ (2011) Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer 11:338–351. https://doi.org/10.1038/nrc3035

    Article  CAS  PubMed  Google Scholar 

  3. Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194:237–255. https://doi.org/10.1002/jcp.10208

    Article  CAS  PubMed  Google Scholar 

  4. Brzozowa-Zasada M, Piecuch A, Michalski M et al (2017) Notch and its oncogenic activity in human malignancies. Eur Surg Acta Chir Austriaca 49:199–209. https://doi.org/10.1007/s10353-017-0491-z

    Article  Google Scholar 

  5. Radtke F, Raj K (2003) The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3:756–767. https://doi.org/10.1038/nrc1186

    Article  CAS  PubMed  Google Scholar 

  6. South AP, Cho RJ, Aster JC (2012) The double-edged sword of Notch signaling in cancer. Semin Cell Dev Biol 23:458–464. https://doi.org/10.1016/j.semcdb.2012.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Katoh M, Katoh M (2007) Notch signaling in gastrointestinal tract (review). Int J Oncol 30:247–251. https://doi.org/10.3892/ijo.30.1.247

    Article  CAS  PubMed  Google Scholar 

  8. Farooqi AA, de la Roche M, Djamgoz MBA, Siddik ZH (2019) Overview of the oncogenic signaling pathways in colorectal cancer: mechanistic insights. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2019.01.001

    Article  PubMed  Google Scholar 

  9. Miyamoto R (2011) The role of notch signaling in colon homeostasis and carcinogenesis. Cancer Sci 257:2432–2437. https://doi.org/10.1016/j.immuni.2010.12.017.Two-stage

    Article  Google Scholar 

  10. Karamanavi E, Angelopoulou K, Lavrentiadou S et al (2014) Urokinase-type plasminogen activator deficiency promotes neoplasmatogenesis in the colon of mice. Transl Oncol 7:174–187.e5. https://doi.org/10.1016/j.tranon.2014.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hyytiäinen M, Penttinen C, Keski-Oja J (2004) Latent TGF-β binding proteins: extracellular matrix association and roles in TGF-β activation. Crit Rev Clin Lab Sci 41:233–264. https://doi.org/10.1080/10408360490460933

    Article  CAS  PubMed  Google Scholar 

  12. Lyons RM, Gentry LE, Purchio AF, Moses HL (1990) Mechanism of activation of latent recombinant transforming growth factor β1 by plasmin. J Cell Biol 110:1361–1367. https://doi.org/10.1083/jcb.110.4.1361

    Article  CAS  PubMed  Google Scholar 

  13. McMahon B, Kwaan HC (2008) The plasminogen activator system and cancer. Pathophysiol Haemost Thromb 36:184–194. https://doi.org/10.1159/000175156

    Article  CAS  PubMed  Google Scholar 

  14. Karagiannis GS, Angelopoulou K, Poutahidis T et al (2016) BMP pathway suppression is an early event in inflammation-driven colon neoplasmatogenesis of uPA-deficient mice. Tumor Biol 37:2243–2255. https://doi.org/10.1007/s13277-015-3988-8

    Article  CAS  Google Scholar 

  15. Afaloniati H, Karagiannis GS, Hardas A et al (2017) Inflammation-driven colon neoplasmatogenesis in uPA-deficient mice is associated with an increased expression of Runx transcriptional regulators. Exp Cell Res 361:257–264. https://doi.org/10.1016/j.yexcr.2017.10.025

    Article  CAS  PubMed  Google Scholar 

  16. Brzozowa-Zasada M, Piecuch A, Dittfeld A et al (2016) Notch signalling pathway as an oncogenic factor involved in cancer development. Contemp Oncol 20:267–272. https://doi.org/10.5114/wo.2016.61845

    Article  CAS  Google Scholar 

  17. Klüppel M, Wrana JL (2005) Turning it up a Notch: cross-talk between TGFβ and Notch signaling. BioEssays 27:115–118. https://doi.org/10.1002/bies.20187

    Article  CAS  PubMed  Google Scholar 

  18. Irshad S, Bansal M, Guarnieri P et al (2017) Bone morphogenetic protein and Notch signalling crosstalk in poor-prognosis, mesenchymal-subtype colorectal cancer. J Pathol 242:178–192. https://doi.org/10.1002/path.4891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Borggrefe T, Oswald F (2009) The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci 66:1631–1646. https://doi.org/10.1007/s00018-009-8668-7

    Article  CAS  PubMed  Google Scholar 

  20. Candy PA, Phillips MR, Redfern AD et al (2013) Notch-induced transcription factors are predictive of survival and 5-fluorouracil response in colorectal cancer patients. Br J Cancer 109:1023–1030. https://doi.org/10.1038/bjc.2013.431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ghaleb AM, Aggarwal G, Bialkowska AB et al (2008) Notch inhibits expression of the Kruppel-like factor 4 tumor suppressor in the intestinal epithelium. Mol Cancer Res 6:1920–1927. https://doi.org/10.1158/1541-7786.MCR-08-0224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao W, Hisamuddin IM, Nandan MO et al (2004) Identification of Krüppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene 23:395–402. https://doi.org/10.1038/sj.onc.1207067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Capaccione KM, Hong X, Morgan KM et al (2015) Sox9 mediates Notch1-induced mesenchymal features in lung adenocarcinoma. Oncotarget. https://doi.org/10.18632/oncotarget.1970

    Article  Google Scholar 

  24. Prévostel C, Blache P (2017) The dose-dependent effect of SOX9 and its incidence in colorectal cancer. Eur J Cancer 86:150–157. https://doi.org/10.1016/j.ejca.2017.08.037

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Li B, Ji ZZ, Zheng PS (2010) Notch1 regulates the growth of human colon cancers. Cancer 116:5207–5218. https://doi.org/10.1002/cncr.25449

    Article  CAS  PubMed  Google Scholar 

  26. Fender AW, Nutter JM, Fitzgerald TL et al (2015) Notch-1 promotes stemness and epithelial to mesenchymal transition in colorectal cancer. J Cell Biochem 116:2517–2527. https://doi.org/10.1002/jcb.25196

    Article  CAS  PubMed  Google Scholar 

  27. Chu D, Li Y, Wang W et al (2010) High level of notch1 protein is associated with poor overall survival in colorectal cancer. Ann Surg Oncol 17:1337–1342. https://doi.org/10.1245/s10434-009-0893-7

    Article  PubMed  Google Scholar 

  28. Chu D, Zhang Z, Zhou Y et al (2011) Notch1 and notch2 have opposite prognostic effects on patients with colorectal cancer. Ann Oncol 22:2440–2447. https://doi.org/10.1093/annonc/mdq776

    Article  CAS  PubMed  Google Scholar 

  29. Wang W-J, Yao Y, Jiang L-L et al (2013) Increased LEF1 expression and decreased Notch2 expression are strong predictors of poor outcomes in colorectal cancer patients. Dis Markers 35:395–405. https://doi.org/10.1155/2013/983981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sugiyama M, Oki E, Nakaji Y et al (2016) High expression of the Notch ligand Jagged-1 is associated with poor prognosis after surgery for colorectal cancer. Cancer Sci 107:1705–1716. https://doi.org/10.1111/cas.13075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guilmeau S, Flandez M, Mariadason JM, Augenlicht LH (2010) Heterogeneity of Jagged1 expression in human and mouse intestinal tumors: implications for targeting Notch signaling. Oncogene 29:992–1002. https://doi.org/10.1038/onc.2009.393

    Article  CAS  PubMed  Google Scholar 

  32. Vaish V, Kim J, Shim M (2017) Jagged-2 (JAG2) enhances tumorigenicity and chemoresistance of colorectal cancer cells. Oncotarget 8:53262–53275. https://doi.org/10.18632/oncotarget.18391

    Article  PubMed  PubMed Central  Google Scholar 

  33. Serafin V, Persano L, Moserle L et al (2011) Notch3 signalling promotes tumour growth in colorectal cancer. J Pathol 224:448–460. https://doi.org/10.1002/path.2895

    Article  CAS  PubMed  Google Scholar 

  34. Jubb AM, Turley H, Moeller HC et al (2009) Expression of delta-like ligand 4 (Dll4) and markers of hypoxia in colon cancer. Br J Cancer 101:1749–1757. https://doi.org/10.1038/sj.bjc.6605368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Benedito R, Roca C, Sörensen I et al (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:1124–1135. https://doi.org/10.1016/j.cell.2009.03.025

    Article  CAS  PubMed  Google Scholar 

  36. Quillard T, Devallière J, Coupel S, Charreau B (2010) Inflammation dysregulates Notch signaling in endothelial cells: implication of Notch2 and Notch4 to endothelial dysfunction. Biochem Pharmacol 80:2032–2041. https://doi.org/10.1016/j.bcp.2010.07.010

    Article  CAS  PubMed  Google Scholar 

  37. Johnston DA, Dong B, Hughes CCW (2009) TNF induction of jagged-1 in endothelial cells is NFκB-dependent. Gene 435:36–44. https://doi.org/10.1016/j.gene.2009.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Borggrefe T, Lauth M, Zwijsen A et al (2016) The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways. Biochim Biophys Acta Mol Cell Res 1863:303–313. https://doi.org/10.1016/j.bbamcr.2015.11.020

    Article  CAS  Google Scholar 

  39. Xu H-L, Gao J, Zheng G-R et al (2009) RUNX3 directly interacts with intracellular domain of Notch1 and suppresses Notch signaling in hepatocellular carcinoma cells. Exp Cell Res 316:149–157. https://doi.org/10.1016/j.yexcr.2009.09.025

    Article  CAS  PubMed  Google Scholar 

  40. Ghaleb AM, Yang VW (2017) Krüppel-like factor 4 (KLF4): what we currently know. Gene 611:27–37. https://doi.org/10.1016/j.gene.2017.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu C, Liu L, Chen X et al (2016) Sox9 regulates self-renewal and tumorigenicity by promoting symmetrical cell division of cancer stem cells in hepatocellular carcinoma. Hepatology 64:117–129. https://doi.org/10.1002/hep.28509

    Article  CAS  PubMed  Google Scholar 

  42. Matheu A, Collado M, Wise C et al (2012) Oncogenicity of the developmental transcription factor Sox9. Cancer Res 72:1301–1315. https://doi.org/10.1158/0008-5472.CAN-11-3660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Murakami S, Lefebvre V, De Crombrugghe B (2000) Potent inhibition of the master chondrogenic factor Sox9 gene by interleukin-1 and tumor necrosis factor-α. J Biol Chem 275:3687–3692. https://doi.org/10.1074/jbc.275.5.3687

    Article  CAS  PubMed  Google Scholar 

  44. Hyun MS, Minter LM, Ok HC et al (2006) Notch1 augments NF-κB activity by facilitating its nuclear retention. EMBO J 25:129–138. https://doi.org/10.1038/sj.emboj.7600902

    Article  CAS  Google Scholar 

  45. Raghu H, Gondi CS, Dinh DH et al (2011) Specific knockdown of uPA/uPAR attenuates invasion in glioblastoma cells and xenografts by inhibition of cleavage and trafficking of Notch-1 receptor. Mol Cancer 10:130. https://doi.org/10.1186/1476-4598-10-130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ulisse S, Baldini E, Sorrenti S, D’Armiento M (2009) The urokinase plasminogen activator system: a target for anti-cancer therapy. Curr Cancer Drug Targets 9:32–71. https://doi.org/10.2174/156800909787314002

    Article  CAS  PubMed  Google Scholar 

  47. Schmitt M, Magdolen V, Sperl S et al (2001) Interference with the urokinase plasminogen activator system: a promising therapy concept for solid tumours. Expert Opin Biol Ther 1:683–691. https://doi.org/10.1517/14712598.1.4.683

    Article  PubMed  Google Scholar 

  48. Alketbi A, Attoub S (2015) Notch signaling in cancer: rationale and strategies for targeting. Curr Cancer Drug Targets 15:364–374. https://doi.org/10.2174/156800961505150710113353

    Article  CAS  PubMed  Google Scholar 

  49. Janghorban M, Xin L, Rosen JM, Zhang XHF (2018) Notch signaling as a regulator of the tumor immune response: to target or not to target? Front Immunol. https://doi.org/10.3389/fimmu.2018.01649

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Bodossaki Foundation for the kind donation of the real-time PCR instrumentation, and to Dr. Elisavet Karamanavi for animal breeding, maintaining and experimental handling.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The use of the Pannoramic 250 Flash II whole slide scanner was supported by SIG 1S10OD019961-01 (NCI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina Angelopoulou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afaloniati, H., Karagiannis, G.S., Karavanis, E. et al. Inflammation-induced colon cancer in uPA-deficient mice is associated with a deregulated expression of Notch signaling pathway components. Mol Cell Biochem 464, 181–191 (2020). https://doi.org/10.1007/s11010-019-03659-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03659-9

Keywords

Navigation