Skip to main content
Log in

Mesophase state and shear-affected phase separation of poly(p-phenylene-benzimidazole-terephthalamide) solutions in N,N-dimethylacetamide

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The solubility of poly(p-phenylene-benzimidazole-terephthalamide) (PABI) and its copolymer poly(p-phenylene-benzimidazole-terephthalamide-co-p-phenylene-terephthalamide) (CPABI) in N,N-dimethylacetamide (DMA) has been studied by laser microinterferometry. The solubility of PABI and CPABI in DMA (containing 3% LiCl) is 28.4% and 4.8% respectively and seems to be independent of temperature due to the LCST for both polymers. Microheterogenic mesophase was detected in PABI solutions at a concentration of 10.7–28.4%. The effect of temperature change rate and intensity of dynamic or continuous shear on microphase separation point of PABI and CPABI solutions was determined by a minimum of stationary or complex viscosity. The higher heating rate shifts the position of phase transition towards higher temperatures due to kinetic reasons. The increase in shear stress also elevates the phase separation temperature due to the intense mixing of the system and preventing formation of nucleation centers of a new phase. Large-amplitude shear oscillations help better maintain the system in a homogeneous state compared to a steady state flow due to the smaller influence on the conformation of macromolecular chains and their entropy. When deforming solutions are heated at a low rate, the effect of the shear on the phase equilibrium increases, and the phase separation temperature can shift to lower temperatures. Possible strategies for directed use of microphase separation to obtain aramid fibers and membranes have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Budnitskii GA (1990) Reinforcing fibres for composites. Fibre Chem 22:55–69. https://doi.org/10.1007/BF00555725

    Article  Google Scholar 

  2. Avrorova LV, Volokhina AV, Glazunov VB, Kudryavtsev GI, Makarova RA, Oprits ZG, Tokarev AV, Semenova AS (1990) Third-generation man-made fibres produced in the USSR. Fibre Chem 21:298–305. https://doi.org/10.1007/BF00556106

    Article  Google Scholar 

  3. Perepelkin KE, Machalaba NN (2000) Recent achievements in structure ordering and control of properties of para-aramide fibres. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst 353:275–286. https://doi.org/10.1080/10587250008025667

    Article  CAS  Google Scholar 

  4. Tikhonov IV, Tokarev AV, Shorin SV, Shchetinin VM, Chernykh TE, Bova VG (2013) Russian aramid fibres: past−present−future. Fibre Chem 45:1–8. https://doi.org/10.1007/s10692-013-9471-7

    Article  CAS  Google Scholar 

  5. Kotomin SV (2013) Polymer molecular composites–new history. J Thermoplast Compos Mater 26:91–108. https://doi.org/10.1177/0892705711419696

    Article  CAS  Google Scholar 

  6. Li K, Li L, Qin J, Liu X (2016) A facile method to enhance UV stability of PBIA fibers with intense fluorescence emission by forming complex with hydrogen chloride on the fibers surface. Polym Degrad Stab 128:278–285. https://doi.org/10.1016/j.polymdegradstab.2016.03.033

    Article  CAS  Google Scholar 

  7. Dai Y, Meng C, Cheng Z, Luo L, Liu X (2019) Nondestructive modification of aramid fiber based on selective reaction of external cross-linker to improve interfacial shear strength and compressive strength. Compos A Appl Sci Manuf 119:217–224. https://doi.org/10.1016/j.compositesa.2019.02.007

    Article  CAS  Google Scholar 

  8. Luo L, Wang Y, Huang J, Hong D, Wang X, Liu X (2016) Pre-drawing induced evolution of phase, microstructure and property in para-aramid fibres containing benzimidazole moiety. RSC Adv 6:62695–62704. https://doi.org/10.1039/C6RA10184D

    Article  CAS  Google Scholar 

  9. Engelbrecht-Wiggans A, Hoang TN, Bentley V, Krishnamurthy A, Kaplan L, Forster AL (2020) Effect of elevated temperature and humidity on fibers based on 5-amino-2-(p-aminophenyl) benzimidazole (PBIA). SN Appl Sci 2:705. https://doi.org/10.1007/s42452-020-2489-6

    Article  CAS  Google Scholar 

  10. Dai Y, Yuan Y, Luo L, Liu X (2018) A facile strategy for fabricating aramid fiber with simultaneously high compressive strength and high interfacial shear strength through cross-linking promoted by oxygen. Compos A Appl Sci Manuf 113:233–241. https://doi.org/10.1016/j.compositesa.2018.07.034

    Article  CAS  Google Scholar 

  11. McDonough WG, Dunkers JP, Forster AL, Heckert NA, Kim JH, Wight SA, Holmes GA (2015) Testing and analyses of copolymer fibers based on 5-amino-2-(p-aminophenyl)-benzimidazole. Fibers Polym 16:1836–1852. https://doi.org/10.1007/s12221-015-5195-z

    Article  CAS  Google Scholar 

  12. Li K, Luo L, Huang J, Wang H, Feng Y, Liu X (2015) Enhancing mechanical properties of aromatic polyamide fibers containing benzimidazole units via temporarily suppressing hydrogen bonding and crystallization. J Appl Polym Sci 132:42482. https://doi.org/10.1002/app.42482

    Article  CAS  Google Scholar 

  13. Nadi A, Boukhriss A, Bentis A, Jabrane E, Gmouh S (2018) Evolution in the surface modification of textiles: a review. Text Prog 50:67–108. https://doi.org/10.1080/00405167.2018.1533659

    Article  Google Scholar 

  14. Arulvel S, Reddy DM, Rufuss DDW, Akinaga T (2021) A comprehensive review on mechanical and surface characteristics of composites reinforced with coated fibres. Surf Interfaces 27:101449. https://doi.org/10.1016/j.surfin.2021.101449

    Article  CAS  Google Scholar 

  15. Palola S, Vuorinen J, Noordermeer JW, Sarlin E (2020) Development in additive methods in Aramid fiber surface modification to increase fiber-matrix adhesion: A review. Coatings 10:556. https://doi.org/10.3390/coatings10060556

    Article  CAS  Google Scholar 

  16. Dai Y, Feng J, Meng C, Luo L, Qin J, Liu X (2019) Improving interfacial and compressive properties of aramid by synchronously grafting and crosslinking. Macromol Mater Eng 304:1900044. https://doi.org/10.1002/mame.201900044

    Article  CAS  Google Scholar 

  17. Zhang B, Jia L, Tian M, Ning N, Zhang L, Wang W (2021) Surface and interface modification of aramid fiber and its reinforcement for polymer composites: A review. Eur Polymer J 147:110352. https://doi.org/10.1016/j.eurpolymj.2021.110352

    Article  CAS  Google Scholar 

  18. Li T, Wang Z, Yu J, Wang Y, Zhu J, Hu Z (2019) Cu (II) coordination modification of aramid fiber and effect on interfacial adhesion of composites. High Perform Polym 31:1054–1061. https://doi.org/10.1177/0954008318818678

    Article  CAS  Google Scholar 

  19. Yuan Y, Dai Y, Meng C, Luo L, Liu X (2019) Improving compressive strength of aramid fiber by introducing carbon nanotube derivates grafted with oligomers of different conformations and controlling its alignment. Macromol Mater Eng 304:1900127. https://doi.org/10.1002/mame.201900127

    Article  CAS  Google Scholar 

  20. Ma L, Zhang J, Teng C (2020) Covalent functionalization of aramid fibers with zinc oxide nano-interphase for improved UV resistance and interfacial strength in composites. Compos Sci Technol 188:107996. https://doi.org/10.1016/j.compscitech.2020.107996

    Article  CAS  Google Scholar 

  21. Cheng Z, Zhang L, Jiang C, Dai Y, Meng C, Luo L, Liu X (2018) Aramid fiber with excellent interfacial properties suitable for resin composite in a wide polarity range. Chem Eng J 347:483–492. https://doi.org/10.1016/j.cej.2018.04.149

    Article  CAS  Google Scholar 

  22. Luo L, Wang Y, Dai Y, Yuan Y, Meng C, Cheng Z, Wang X, Liu X (2018) The introduction of asymmetric heterocyclic units into poly (p-phenylene terephthalamide) and its effect on microstructure, interactions and properties. J Mater Sci 53:13291–13303. https://doi.org/10.1007/s10853-018-2580-1

    Article  CAS  Google Scholar 

  23. Ilyin SO, Brantseva TV, Kotomin SV, Antonov SV (2018) Epoxy nanocomposites as matrices for aramid fiber-reinforced plastics. Polym Compos 39:E2167–E2174. https://doi.org/10.1002/pc.24515

    Article  CAS  Google Scholar 

  24. Fan W, Tian H, Wang H, Zhang T, Yang X, Yu Y, Meng X, Yu X, Yuan L, Xu B, Wang S (2018) Enhanced interfacial adhesion of aramid fiber III reinforced epoxy composites via low temperature plasma treatment. Polym Testing 72:147–156. https://doi.org/10.1016/j.polymertesting.2018.10.003

    Article  CAS  Google Scholar 

  25. Baji A, Mai YW, Wong SC, Abtahi M, Chen P (2010) Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70:703–718. https://doi.org/10.1016/j.compscitech.2010.01.010

    Article  CAS  Google Scholar 

  26. Chen S, Han D, Hou H (2011) High strength electrospun fibers. Polym Adv Technol 22:295–303. https://doi.org/10.1002/pat.1864

    Article  CAS  Google Scholar 

  27. Papkov D, Delpouve N, Delbreilh L, Araujo S, Stockdale T, Mamedov S, Maleckis K, Zou Y, Andalib MN, Dargent E, Dravid VP (2019) Quantifying polymer chain orientation in strong and tough nanofibers with low crystallinity: toward next generation nanostructured superfibers. ACS Nano 13:4893–4927. https://doi.org/10.1021/acsnano.8b08725

    Article  CAS  PubMed  Google Scholar 

  28. Park JH, Rutledge GC (2017) 50th Anniversary perspective: advanced polymer fibers: high performance and ultrafine. Macromolecules 50:5627–5642. https://doi.org/10.1021/acs.macromol.7b00864

    Article  CAS  Google Scholar 

  29. Sun G, Zhang M, Chen N, Niu H, Qi S, Wu D (2020) Fabrication of Ultrahigh-strength polybenzimidazole fibers via a novel and green integrated liquid crystal spinning process. Macromol Mater Eng 305:1900717. https://doi.org/10.1002/mame.201900717

    Article  CAS  Google Scholar 

  30. Wyatt TP, Chien AT, Kumar S, Yao D (2014) Development of a gel spinning process for high-strength poly (ethylene oxide) fibers. Polym Eng Sci 54:2839–2847. https://doi.org/10.1002/pen.23842

    Article  CAS  Google Scholar 

  31. Kaur J, Millington K, Smith S (2016) Producing high-quality precursor polymer and fibers to achieve theoretical strength in carbon fibers: A review. J Appl Polym Sci 133:43963. https://doi.org/10.1002/app.43963

    Article  CAS  Google Scholar 

  32. Lancuski A, Vasilyev G, Putaux JL, Zussman E (2015) Rheological properties and electrospinnability of high-amylose starch in formic acid. Biomacromol 16:2529–2536. https://doi.org/10.1021/acs.biomac.5b00817

    Article  CAS  Google Scholar 

  33. Kulichikhin VG, Ilyin SO, Mironova MV, Berkovich AK, Nifant’ev IE, Malkin AY (2018) From polyacrylonitrile, its solutions, and filaments to carbon fibers: I. Phase state and rheology of basic polymers and their solutions. Adv Polym Technol 37:1076–1084. https://doi.org/10.1002/adv.21758

    Article  CAS  Google Scholar 

  34. Zhang X, Liu T, Sreekumar TV, Kumar S, Hu X, Smith K (2004) Gel spinning of PVA/SWNT composite fiber. Polymer 45:8801–8807. https://doi.org/10.1016/j.polymer.2004.10.048

    Article  CAS  Google Scholar 

  35. Liu S, Tan L, Pan D, Chen Y (2011) Gel spinning of polyacrylonitrile fibers with medium molecular weight. Polym Int 60:453–457. https://doi.org/10.1002/pi.2968

    Article  CAS  Google Scholar 

  36. Papkov SP, Kulichikhin VG, Kalmykova VD, Malkin AY (1974) Rheological properties of anisotropic poly (para-benzamide) solutions. J Polym Sci Polym Phys Ed 12:1753–1770. https://doi.org/10.1002/pol.1974.180120903

    Article  CAS  Google Scholar 

  37. Kulichikhin VG (1989) Rheology, phase equilibria and processing of lyotropic liquid crystalline polymers. Mol Cryst Liq Cryst 169:51–81. https://doi.org/10.1080/00268948908062733

    Article  CAS  Google Scholar 

  38. Borodulina T, Bermesheva E, Smirnova N, Ilyin S, Brantseva T, Antonov S (2014) Adhesive properties of liquid crystalline hydroxypropyl cellulose–propylene glycol blends. J Adhes Sci Technol 28:1629–1643. https://doi.org/10.1080/01694243.2014.908764

    Article  CAS  Google Scholar 

  39. Smirnova VN, Prozorova GY, Iovleva MM, Papkov SP (1983) Estimation of the rigidity of polyamidebenzimidazole macromolecules in solutions. Vysokomol Soedin Ser B 25:527–529

    CAS  Google Scholar 

  40. Tsvetkov VN (1977) The structure of the monomer unit and the flexibility of rigid chain polymer molecules. Review. Polym Sci USSR 19:2485–2508. https://doi.org/10.1016/0032-3950(77)90329-X

    Article  Google Scholar 

  41. Douglas JF (1992) “Shift” in polymer blend phase-separation temperature in shear flow. Macromolecules 25:1468–1474. https://doi.org/10.1021/ma00031a017

    Article  CAS  Google Scholar 

  42. Kotomin SV, Il’in SO, Filippova TN, Shambilova GK (2013) Rheological and phase behavior of polyamidobenzimidazole solutions under the effect of temperature and deformation. Polym Sci Ser A 55:186–191. https://doi.org/10.1134/S0965545X13030036

    Article  CAS  Google Scholar 

  43. Malkin AY, Kulichikhin VG, Polyakova MY, Zuev KV, Govorov VA (2020) Unexpected rheological behavior of solutions of aromatic polyamide in transient physical states. Phys Fluids 32:073107. https://doi.org/10.1063/5.0011718

    Article  CAS  Google Scholar 

  44. Malkin A, Ilyin S, Roumyantseva T, Kulichikhin V (2013) Rheological evidence of gel formation in dilute poly (acrylonitrile) solutions. Macromolecules 46:257–266. https://doi.org/10.1021/ma301423u

    Article  CAS  Google Scholar 

  45. Gorbacheva SN, Yadykova AY, Ilyin SO (2021) Rheological and tribological properties of low-temperature greases based on cellulose acetate butyrate gel. Carbohyd Polym 272:118509. https://doi.org/10.1016/j.carbpol.2021.118509

    Article  CAS  Google Scholar 

  46. Rangel-Nafaile C, Metzner AB, Wissburn KF (1984) Analysis of stress-induced phase separations in polymer solutions. Macromolecules 17:1187–1195. https://doi.org/10.1021/ma00136a015

    Article  CAS  Google Scholar 

  47. Vshivkov SA, Kulichikhin SG, Rusinova EV (1998) Phase transitions in polymer solutions induced by mechanical fields. Russ Chem Rev 67:233–243. https://doi.org/10.1070/RC1998v067n03ABEH000319

    Article  Google Scholar 

  48. Malkin AY, Kulichikhin SG, Kozhina VA (1996) Phase separation in solutions of flexible-chain polymers under the action of shear deformation. Polym Sci Ser A 38:932–936

    Google Scholar 

  49. Malkin AY, Kulichikhin SG (1996) Stress-induced phase transitions in polymer systems. Polym Sci, Ser B 38:104–115

    Google Scholar 

  50. Karpukhina EA, Il’in SO, Makarova VV, Meshkov IB, Kulichikhin VG (2014) Phase state and rheology of polyisobutylene mixtures with decyl surface modified silica nanoparticles. Polym Sci Ser A 56(798):798–811. https://doi.org/10.1134/S0965545X14060066

    Article  CAS  Google Scholar 

  51. Arinina MP, Ilyin SO, Makarova VV, Gorbunova IY, Kerber ML, Kulichikhin VG (2015) Miscibility and rheological properties of epoxy resin blends with aromatic polyethers. Polym Sci Ser A 57:177–185. https://doi.org/10.1134/S0965545X15020017

    Article  CAS  Google Scholar 

  52. Ilyin SO, Kulichikhin VG, Malkin AY (2013) Unusual rheological effects observed in polyacrylonitrile solutions. Polym Sci Ser A 55:503–509. https://doi.org/10.1134/S0965545X13070018

    Article  CAS  Google Scholar 

  53. Strelets LA, Ilyin SO (2021) Effect of enhanced oil recovery on the composition and rheological properties of heavy crude oil. J Petrol Sci Eng 203:108641. https://doi.org/10.1016/j.petrol.2021.108641

    Article  CAS  Google Scholar 

  54. Iovleva MM (2001) Physicochemical aspects of examining the role and mechanisms of action of lithium chloride in solutions of fibre-forming polymers. Fibre Chem 33:172–176. https://doi.org/10.1023/A:1012309316529

    Article  CAS  Google Scholar 

  55. Chalykh AE, Gerasimov VK (2004) Phase equilibria and phase structures of polymer blends. Russ Chem Rev 73:59–74. https://doi.org/10.1070/RC2004v073n01ABEH000859

    Article  CAS  Google Scholar 

  56. Ilyin SO, Makarova VV, Polyakova MY, Kulichikhin VG (2020) Phase state and rheology of polyisobutylene blends with silicone resin. Rheol Acta 59:375–386. https://doi.org/10.1007/s00397-020-01208-6

    Article  CAS  Google Scholar 

  57. Yadikova AE, Yashchenko VS, Makarova VV, Matveenko YV, Kostyuk AV, Ilyin SO (2020) Synthesis and properties of sulfonated copolymers of oxadiazole, dioxophenoxathiine, and diphenyl oxide. Polym Sci Ser B 62:47–60. https://doi.org/10.1134/S156009042001011X

    Article  CAS  Google Scholar 

  58. Ilyin SO, Yadykova AY, Makarova VV, Yashchenko VS, Matveenko YV (2020) Sulfonated polyoxadiazole synthesis and processing into ion-conducting films. Polym Int 69:1243–1255. https://doi.org/10.1002/pi.6068

    Article  CAS  Google Scholar 

  59. Boltzmann L (1894) Zur integration der diffusionsgleichung bei variabeln diffusionscoefficienten. Ann Phys 289:959–964. https://doi.org/10.1002/andp.18942891315

    Article  Google Scholar 

  60. Ilyin SO, Makarova VV, Polyakova MY, Kulichikhin VG (2020) Phase behavior and rheology of miscible and immiscible blends of linear and hyperbranched siloxane macromolecules. Mater Today Commun 22:100833. https://doi.org/10.1016/j.mtcomm.2019.100833

    Article  CAS  Google Scholar 

  61. Askadskii AA (2003) Computational materials science of polymers. Cambridge International Science Publishing, Cambridge

    Google Scholar 

  62. Ilyin SO, Malkin AY, Kulichikhin VG (2014) Application of large amplitude oscillatory shear for the analysis of polymer material properties in the nonlinear mechanical behavior. Polym Sci, Ser A 56:98–110. https://doi.org/10.1134/S0965545X14010039

    Article  CAS  Google Scholar 

  63. Ilyin S, Kulichikhin V, Malkin A (2014) Characterization of material viscoelasticity at large deformations. Appl Rheol 24:13653. https://doi.org/10.3933/applrheol-24-13653

    Article  Google Scholar 

  64. Malkin AY, Isayev AI (2017) Rheology: concepts, methods, and applications. ChemTec Publishing, Toronto. https://doi.org/10.1016/B978-1-927885-21-5.50001-1

  65. Yadykova AY, Ilyin SO (2022) Rheological and adhesive properties of nanocomposite bitumen binders based on hydrophilic or hydrophobic silica and modified with bio-oil. Constr Build Mater 342:127946. https://doi.org/10.1016/j.conbuildmat.2022.127946

    Article  CAS  Google Scholar 

  66. Papkov SP, Iovleva MM (1974) Classification of polymer-low molecular liquid systems according to their physical condition. Polym Sci USSR 16:614–619. https://doi.org/10.1016/0032-3950(74)90373-6

    Article  Google Scholar 

  67. Rogovina LZ, Slonimskii GL (1974) Formation, structure, and properties of polymer gels. Russ Chem Rev 43:503–523. https://doi.org/10.1070/RC1974v043n06ABEH001821

    Article  Google Scholar 

  68. Rogovina LZ, Vasil’ev VG, Braudo EE (2008) Definition of the concept of polymer gel. Polym Sci Ser C 50:85–92. https://doi.org/10.1134/S1811238208010050

    Article  Google Scholar 

  69. Graessley WW (1980) Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight and solvent power. Polymer 21:258–262. https://doi.org/10.1016/0032-3861(80)90266-9

    Article  CAS  Google Scholar 

  70. Vitovskaya MG, Lavrenko PN, Okatova OV, Astapenko EP, Novakovsky VB, Bushin SV, Tsvetkov VN (1982) Hydrodynamic properties and equilibrium rigidity of polyamidobenzimidazole molecules in dimethylacetamide and sulphuric acid. Eur Polymer J 18:583–588. https://doi.org/10.1016/0014-3057(82)90035-0

    Article  CAS  Google Scholar 

  71. Shtennikova IN, Garmonova TI (1983) Concerning the conformation of an aromatic polyamide in an organic solvent and in concentrated sulphuric acid according to flow-birefringence data. Polym Sci USSR 25:1906–1913. https://doi.org/10.1016/0032-3950(83)90311-8

    Article  Google Scholar 

  72. Frenkel S (1974) Thermokinetics of formation of ordered structures in polymer solutions and gel. Pure Appl Chem 38:117–149. https://doi.org/10.1351/pac197438010117

    Article  CAS  Google Scholar 

  73. Papkov SP (1977) The liquid crystalline state of linear polymers. Review. Polym Sci USSR 19:1–19. https://doi.org/10.1016/0032-3950(77)90142-3

    Article  Google Scholar 

  74. Bheda J, Fellers JF, White JL (1980) Phase behavior and structure of liquid crystalline solutions of cellulose derivatives. Colloid Polym Sci 258:1335–1342. https://doi.org/10.1007/BF01668781

    Article  CAS  Google Scholar 

  75. Ilyin SO (2015) Non-linearity in rheological properties of polymers and composites under large amplitude oscillatory shear. Polym Sci Ser A 57:910–923. https://doi.org/10.1134/S0965545X15060103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out within the State Program of A.V. Topchiev Institute of Petrochemical Synthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey O. Ilyin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyin, S.O., Kotomin, S.V. Mesophase state and shear-affected phase separation of poly(p-phenylene-benzimidazole-terephthalamide) solutions in N,N-dimethylacetamide. J Polym Res 29, 326 (2022). https://doi.org/10.1007/s10965-022-03189-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03189-x

Keywords

Navigation