Skip to main content
Log in

Unusual rheological effects observed in polyacrylonitrile solutions

  • Rheology
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Unusual rheological effects have been revealed during the deformation of polyacrylonitrile (PAN) solutions in DMSO. The effects are observed during the study of rheological properties in a wide range of PAN concentrations and are explained by the structuring occurring at low polymer concentrations. At concentrations of at most 0.1%, the solutions exhibit the behavior of soft gels, which are characterized by yield stresses and frequency-independent storage moduli. As concentration is increased, both effects gradually vanish and the solutions are almost transformed into Newtonian liquids. The results have been explained by the formation of a supramolecular spatial structure at low polymer concentrations. As concentration is increased, the role of structuring is suppressed by the formation of a network of intermacromolecular entanglements. The ability of dilute PAN solutions to exist in two states, i.e., with destroyed structuring and in the form of a physical polymer gel, leads to stress self-oscillations and thixotropic effects. The addition of a precipitant (water) to the PAN-DMSO solutions leads to the formation of a gel throughout the concentration range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Strobl, The Physics of Polymers: Concepts for Understanding Their Structures and Behavior (Springer, New York, 2007).

    Google Scholar 

  2. A. Ya. Malkin and A. Isaev, Rheology: Concepts, Methods, Applications (TsOP Professiya, St. Petersburg, 2010) [in Russian].

    Google Scholar 

  3. L. Tan, H. Chen, D. Pan, and N. Pan, Eur. Polym. J. 45, 1617 (2009).

    Article  CAS  Google Scholar 

  4. L. Tan, S. Liu, and D. Pan, Colloid Surf. A: Physicochem. Eng. Asp. 340, 168 (2009).

    Article  CAS  Google Scholar 

  5. W. Du, H. Chen, H. Xu, D. Pan, and N. Pan, J. Polym. Sci., Part B: Polym. Phys. 47, 1437 (2009).

    Article  CAS  Google Scholar 

  6. L. Tan, S. Liu, D. Pan, and N. Pan, Soft Matter 5, 4297 (2009).

    Article  CAS  Google Scholar 

  7. P. J. Flory, Chem. Phys. 17, 303 (1949).

    CAS  Google Scholar 

  8. J. P. Cotton, D. Decker, H. Benoit, B. Farnoux, J. Higgins, G. Jannink, R. Ober, C. Picot, and J. Des Cloizeaux, Macromolecules 7, 863 (1974).

    Article  Google Scholar 

  9. K. Almdal, K. A. Koppi, F. S. Bates, and K. Mortensen, Macromolecules 25, 1743 (1992).

    Article  CAS  Google Scholar 

  10. H. Watanabe, T. Kanaya, and Y. Takahashi, Macromolecules 34, 662 (2001).

    Article  CAS  Google Scholar 

  11. R. C. Hayward and D. J. Pochan, Macromolecules 43, 3577 (2010).

    Article  CAS  Google Scholar 

  12. T. Nicolai, O. Colombani, and C. Chassenieux, Soft Matter 6, 3111 (2010).

    Article  CAS  Google Scholar 

  13. M. Polverari and T. G. M. Van de Ven, J. Phys. Chem. 100, 13687 (1996).

    Article  CAS  Google Scholar 

  14. B. Hammouda, D. L. Ho, and S. Kline, Macromolecules 37, 6932 (2004).

    Article  CAS  Google Scholar 

  15. S. Ilyin, T. Roumyantseva, V. Spiridonova, A. Semakov, E. Frenkin, A. Malkin, and V. Kulichikhin, Soft Matter 7, 9090 (2011).

    Article  CAS  Google Scholar 

  16. J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).

    Google Scholar 

  17. P. G. De Gennes, Scaling Concepts in Polymer Physics (Cornell Univ, Press, Ithaca, 1979; Mir, Moscow, 1982).

    Google Scholar 

  18. P. Möller, A. Fall, V. Chikkadi, D. Derks, and D. Bonn,, Philos. Trans. R. Soc. A 367, 5139 (2009).

    Article  Google Scholar 

  19. P. C. F. Möller, A. Fall, and D. Bonn,, Eur. Phys. Lett. 87, 38004 (2009).

    Article  Google Scholar 

  20. I. Masalova, M. Taylor, E. Kharatiyan, and A. Ya. Malkin, J. Rheol. (N. Y.) 49, 839 (2005).

    Article  CAS  Google Scholar 

  21. N. B. Uriev, Yu. S. Svistunov, N. A. Potapov, and V. A. Starikov, Dokl. Akad. Nauk 416, 70 (2007).

    Google Scholar 

  22. A. Malkin, S. Ilyin, A. Semakov, and V. Kulichikhin, Soft Matter 8, 2607 (2012).

    Article  CAS  Google Scholar 

  23. S. O. Il’in, G. S. Pupchenkov, A. I. Krasheninnikov, V. G. Kulichikhin, and A. Ya. Malkin, Kolloidn. Zh. 75, 295 (2013).

    Google Scholar 

  24. V. G. Kulichikhin, A. Ya. Malkin, A. Arinstein, A. V. Semakov, and I. Yu. Skvortsov, Europhys. Lett. (in press).

  25. R. H. Ewoldt, H. C. Clasen, A. E. Hosoi, and G. H. McKinley, Soft Matter 3, 634 (2007).

    Article  CAS  Google Scholar 

  26. A. Malkin, S. Ilyin, and V. Kulichikhin, Appl. Rheol. (in press).

  27. S. O. Il’in, A. Ya. Malkin, and V. G. Kulichikhin, Polymer Science (in press).

  28. S. P. Papkov, The Gel State of Polymers (Khimiya, Moscow, 1974) [in Russian].

    Google Scholar 

  29. A. Malkin, S. Ilyin, T. Roumyantseva, and V. Kulichikhin, Macromolecules 46, 257 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Ilyin.

Additional information

Original Russian Text © S.O. Ilyin, V.G. Kulichikhin, A.Ya. Malkin, 2013, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2013, Vol. 55, No. 8, pp. 1071–1077.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilyin, S.O., Kulichikhin, V.G. & Malkin, A.Y. Unusual rheological effects observed in polyacrylonitrile solutions. Polym. Sci. Ser. A 55, 503–509 (2013). https://doi.org/10.1134/S0965545X13070018

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X13070018

Keywords

Navigation