Skip to main content
Log in

Magnetic and Mössbauer Spectroscopy of Co/MgFe2O4 Spinel

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The study of spinel ferrite ion sites is an important aspect to optimize its structure. In this report, homogeneous and stable mixed spinels CoFe2O4 and MgFe2O4 were synthesized by a simple sol–gel combustion method. The Curie temperature is higher than 400 K, so the Mössbauer spectrum at room temperature shows a typical magnetically ordered Zeeman sextet. The change in the hyperfine magnetic field is consistent with the change in the saturation magnetization, which can be explained by the change in the superexchange contribution between each point. The frozen magnetic moment at low temperature makes CoFe2O4 appear partly independent of antiferromagnetic domain contribution. The competitive ability of the ion to the B site is Mg2+ > Co2+ > Fe3+, which will provide some guidance for the structural optimization of spinel ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Q. Zhao, Z.H. Yan, C.C. Chen, J. Chen, Chem. Rev. (2017). https://doi.org/10.1021/acs.chemrev.7b00051

    Article  Google Scholar 

  2. W.B. Zuo, V. Pelenovich, Q.D. Li, X.M. Zeng, D.J. Fu, Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.01.010

    Article  Google Scholar 

  3. Q. Lin, Y. He, J.P. Lin, F. Yang, L.P. Wang, J.H. Dong, J. Magn. Magn. Mater. (2019). https://doi.org/10.1016/j.jmmm.2018.08.050

    Article  Google Scholar 

  4. L. Ourry, S. Marchesini, M. Bibani, S. Mercone, S. Ammar, F. Mammeri, Phys. Status Solidi (a) (2015). https://doi.org/10.1002/pssa.201431563

    Article  Google Scholar 

  5. M.P. Dojcinovic, Z.Z. Vasiljevic, V.P. Pavlovic, D. Barisic, D. Pajic, N.B. Tadic, M.V. Nikolic, J. Alloy. Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.157429

    Article  Google Scholar 

  6. K.X. Zhu, J.H. Wang, Y.J. Wang, C.Z. Jin, A.S. Ganeshraja, Catal. Sci. Technol. (2016). https://doi.org/10.1039/c5cy01735a

    Article  Google Scholar 

  7. J.H. Tong, F.F. Liu, W.H. Wang, L.L. Bo, A. Mahboob, H.Y. Fan, Chemistryselect (2016). https://doi.org/10.1002/slct.201601206

    Article  Google Scholar 

  8. X. Chen, K. Zhu, M.A. Ahmed, C.H. Liang, Chin. J. Catal. (2016). https://doi.org/10.1016/s1872-2067(15)61068-3

    Article  Google Scholar 

  9. T. Roman, R.L. Asavei, N.E. Karkalos, C. Roman, C. Virlan, N. Cimpoesu, B. Istrate, M. Zaharia, A.P. Markopoulos, K. Kordatos, S. Stanciu, A. Pui, Int. J. Appl. Ceram. Tec. (2019). https://doi.org/10.1111/ijac.13091

    Article  Google Scholar 

  10. Y.H. Yin, N.N. Huo, W.F. Liu, Z.P. Shi, Q.X. Wang, Y.M. Ding, J. Zhang, S.T. Yang, Scripta Mater. (2016). https://doi.org/10.1016/j.scriptamat.2015.08.009

    Article  Google Scholar 

  11. M. Amiri, M. Salavati-Niasari, A. Akbari, Adv. Colloid. Interface (2019). https://doi.org/10.1016/j.cis.2019.01.003

    Article  Google Scholar 

  12. M. Ounacer, A. Essoumhi, M. Sajieddine, A. Razouk, A. Fnidiki, F. Richomme, J. Juraszek, S.M. Dubiel, M. Sahlaou, J. Phys. Chem. Solids (2021). https://doi.org/10.1016/j.jpcs.2020.109687

    Article  Google Scholar 

  13. A.M. Mohammad, S.M. Aliridha, T.H. Mubarak, J. Dig, Nanomater. Bios. (2018)

  14. D.A. Balaev, S.V. Semenov, A.A. Dubrovskii, A.A. Krasikov, S.I. Popkov, S.S. Yakushkin, V.L. Kirillov, O.N. Mart’yanov, Phys. Solid State (2020). https://doi.org/10.1134/S1063783420020043

    Article  Google Scholar 

  15. P. Wang, J. Xu, Y. Han, B. Hong, H. Jin, D. Jin, X. Peng, J. Li, H. Ge, X. Wang, Mod. Phys. Lett. B (2014). https://doi.org/10.1142/S021798491450095X

    Article  Google Scholar 

  16. Z.K. Yan, J.M. Gao, Y. Li, M. Zhang, M. Guo, RSC Adv. (2015). https://doi.org/10.1039/c5ra17145h

    Article  Google Scholar 

  17. W. Feng, J.F. Dai, C. Cheng, X.C. Wen, Z.P. Li, J. Low Temp. Phys. (2021). https://doi.org/10.1007/s10909-021-02568-w

    Article  Google Scholar 

  18. R. Sepahvandi, H. Masoudi, E. Khosravi, B. Nayebi, J. Supercond. Nov. Magn. (2017). https://doi.org/10.1007/s10948-017-3974-z

    Article  Google Scholar 

  19. H. Zheng, M.G. Han, L.J. Deng, Chin. Phys. B (2016). https://doi.org/10.1088/1674-1056/25/2/026201

    Article  Google Scholar 

  20. X.H. Wang, X.C. Kan, X.S. Liu, S.J. Feng, G.H. Zheng, Z.H.B. Cheng, W. Wang, Z.H. Chen, C.C. Liu, Mater. Today Commun. (2020). https://doi.org/10.1016/j.mtcomm.2020.101414

    Article  Google Scholar 

  21. S.I. Popkov, A.A. Krasikov, S.V. Semenov, A.A. Dubrovskii, S.S. Yakushkin, V.L. Kirillov, O.N. Mart’yanov, D.A. Balaev, Phys. Solid State (2020). https://doi.org/10.1134/S1063783420090255

    Article  Google Scholar 

  22. M. Sundararajan, L.J. Kennedy, P. Nithya, J.J. Vijaya, M. Bououdina, J. Phys. Chem. Solids (2017). https://doi.org/10.1016/j.jpcs.2017.04.002

    Article  Google Scholar 

  23. H. Assi, S. Atiq, S.M. Rammay, N.S. Alzayed, M. Saleem, S. Riaz, S. Naseem, J. Mater Sci-Mater. El. (2017). https://doi.org/10.1007/s10854-016-5795-4

    Article  Google Scholar 

  24. S.J. Mercy, N. Mural, A. Ramakrishna, Y. Ramakrishna, V. Veeraiah, K. Samatha, Appl. Phys. A (2020). https://doi.org/10.1016/j.physb.2017.08.013

    Article  Google Scholar 

  25. T.W. Mammo, N. Murali, Y.M. Sileshi, T. Arunamani, Phy. B (2017). https://doi.org/10.1016/j.physb.2017.08.013

    Article  Google Scholar 

  26. M.Z. Khan, I.H. Gul, A. Malik, J. Supercond. Nov. Magn. (2020). https://doi.org/10.1007/s10948-020-05565-4

    Article  Google Scholar 

  27. U. Wongpratat, S. Maensiri, E. Swatsitang, Ceram Int. (2017). https://doi.org/10.1016/j.ceramint.2017.05.206

    Article  Google Scholar 

  28. H.S. Mund, B.L. Ahuja, Mater. Res. Bull. (2017). https://doi.org/10.1016/j.materresbull.2016.09.027

    Article  Google Scholar 

  29. K.C. Dhanyaprabha, B. Jacob, M. Mohan, I.A. Al-Omari, S.H. Al-Harthi, M.T.Z. Myint, H. Thomas, Phys. Status Solidi (a) (2021). https://doi.org/10.1002/pssa.202100193

    Article  Google Scholar 

  30. K.J. Kim, J. Park, J. Sol Gel Sci. Techn. (2019). https://doi.org/10.1007/s10971-019-05099-9

    Article  Google Scholar 

  31. D. Weng, X.X. Shun, S.X. Tan, Y.X. Li, D.K. Xiong, Y.Y. Huang, Chin. Phys. C (2013). https://doi.org/10.1088/1674-1137/37/12/128201

    Article  Google Scholar 

  32. M.V. Chaudhari, S.E. Shirsath, A.B. Kadam, R.H. Kadam, S.B. Shelke, D.R. Mane, J. Alloy. Compd. (2013). https://doi.org/10.1016/j.jallcom.2012.11.070

    Article  Google Scholar 

  33. R.D. Raland, J.P. Borah, J. Phys. D Appl. Phys. (2017). https://doi.org/10.1088/1361-6463/aa4e9a

    Article  Google Scholar 

  34. J.P. Lin, Y. He, X.L. Du, Q. Lin, H. Yang, H.T. Shen, Crystals (2018). https://doi.org/10.3390/cryst8100384

    Article  Google Scholar 

  35. L. Wang, M. Lu, Y. Liu, J. Li, M. Liu, H.B. Li, Ceram Int (2015). https://doi.org/10.1016/j.ceramint.2014.12.099

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (grant number 12105137), the National Undergraduate Innovation and Entrepreneurship Training Program Support Projects of China, the Natural Science Foundation of Hunan Province, China (grant number S202110555177), the Natural Science Foundation of Hunan Province, China (grant number 2020JJ4517), and the Research Foundation of Education Bureau of Hunan Province, China (grant number 19A433, 19C1621).

Funding

National Natural Science Foundation of China, 12105137, Yanfang Xia, National Undergraduate Innovation and Entrepreneurship Training Program Support Projects of China, the Natural Science Foundation of Hunan Province, China, S202110555177, Yanfang Xia, Natural Science Foundation of Hunan Province, China, 2020JJ4517, Yanfang Xia, Research Foundation of Education Bureau of Hunan Province, China, 19A433, Yanfang Xia, 19C1621, Yanfang Xia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YanFang Xia.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Mo, J., Tao, Y. et al. Magnetic and Mössbauer Spectroscopy of Co/MgFe2O4 Spinel. J Low Temp Phys 209, 166–181 (2022). https://doi.org/10.1007/s10909-022-02773-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02773-1

Keywords

Navigation