Skip to main content
Log in

Reconnection Dynamics and Mutual Friction in Quantum Turbulence

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate the behaviour of the mutual friction force in finite temperature quantum turbulence in \(^4\)He, paying particular attention to the role of quantized vortex reconnections. Through the use of the vortex filament model, we produce three experimentally relevant types of vortex tangles in steady-state conditions, and examine through statistical analysis, how local properties of the tangle influence the mutual friction force. Finally, by monitoring reconnection events, we present evidence to indicate that vortex reconnections are the dominant mechanism for producing areas of high curvature and velocity leading to regions of high mutual friction, particularly for homogeneous and isotropic vortex tangles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Tisza, Phys. Rev. 72(9), 838 (1947). doi:10.1103/PhysRev.72.838

    Article  ADS  Google Scholar 

  2. L. Landau, Phys. Rev. 60(4), 356 (1941). doi:10.1103/PhysRev.60.356

    Article  ADS  MATH  Google Scholar 

  3. L. Landau, Phys. Rev. 75(5), 884 (1949). doi:10.1103/PhysRev.75.884

    Article  ADS  Google Scholar 

  4. W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 128(5–6), 167 (2002). doi:10.1023/A:1019695418590

    Article  ADS  Google Scholar 

  5. W.F. Vinen, J. Low Temp. Phys. 145(1–4), 7 (2006). doi:10.1007/s10909-006-9240-6

    Article  ADS  Google Scholar 

  6. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995)

    MATH  Google Scholar 

  7. A.W. Baggaley, Phys. Fluids 24(5), 055109 (2012). doi:10.1063/1.4719158

    Article  ADS  Google Scholar 

  8. A.W. Baggaley, J. Laurie, C.F. Barenghi, Phys. Rev. Lett. 109(20), 205304 (2012). doi:10.1103/PhysRevLett.109.205304

    Article  ADS  Google Scholar 

  9. H. Adachi, S. Fujiyama, M. Tsubota, Phys. Rev. B 81(10), 104511 (2010). doi:10.1103/PhysRevB.81.104511

    Article  ADS  Google Scholar 

  10. H.E. Hall, W.F. Vinen, Proc. R. Soc. Lond. A 238(1213), 215 (1956). doi:10.1098/rspa.1956.0215

    Article  ADS  MATH  Google Scholar 

  11. I. Bekarevich, I. Khalatnikov, J. Exp. Theor. Phys. 13, 643 (1961)

    Google Scholar 

  12. K.L. Henderson, C.F. Barenghi, C.A. Jones, J. Fluid Mech. 283, 329 (1995). doi:10.1017/S0022112095002345

    Article  ADS  MATH  Google Scholar 

  13. P.E. Roche, C.F. Barenghi, E. Leveque, EPL 87(5), 54006 (2009). doi:10.1209/0295-5075/87/54006

    Article  ADS  Google Scholar 

  14. G.P. Bewley, M.S. Paoletti, K.R. Sreenivasan, D.P. Lathrop, PNAS 105(37), 13707 (2008). doi:10.1073/pnas.0806002105

    Article  ADS  Google Scholar 

  15. L. Skrbek, K.R. Sreenivasan, Phys. Fluids 24(1), 011301 (2012). doi:10.1063/1.3678335

    Article  ADS  Google Scholar 

  16. D. Kivotides, C.F. Barenghi, D.C. Samuels, Science 290(5492), 777 (2000). doi:10.1126/science.290.5492.777

    Article  ADS  Google Scholar 

  17. D. Kivotides, C.F. Barenghi, D.C. Samuels, EPL 54(6), 774 (2001). doi:10.1209/epl/i2001-00321-x

    Article  ADS  Google Scholar 

  18. R. Hänninen, Phys. Rev. B 88(5), 054511 (2013). doi:10.1103/PhysRevB.88.054511

    Article  ADS  Google Scholar 

  19. K.W. Schwarz, Phys. Rev. B 31(9), 5782 (1985). doi:10.1103/PhysRevB.31.5782

    Article  ADS  Google Scholar 

  20. P.G. Saffman, Vortex Dynamics (Cambridge University Press, Cambridge, 1992)

    MATH  Google Scholar 

  21. R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27(6), 1217 (1998). doi:10.1063/1.556028

    Article  ADS  Google Scholar 

  22. O.C. Idowu, D. Kivotides, C.F. Barenghi, D.C. Samuels, J. Low Temp. Phys. 120(3–4), 269 (2000). doi:10.1023/A:1004641912850

    Article  ADS  Google Scholar 

  23. A.W. Baggaley, C.F. Barenghi, Phys. Rev. B 84(2), 020504 (2011). doi:10.1103/PhysRevB.84.020504

    Article  ADS  Google Scholar 

  24. A.W. Baggaley, C.F. Barenghi, J. Low Temp. Phys. 166(1–2), 3 (2012). doi:10.1007/s10909-011-0405-6

    Article  ADS  Google Scholar 

  25. Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen, A. Szalay, G. Eyink, J. Turbulence p. N31 (2008). doi:10.1080/14685240802376389

  26. D. Kivotides, Phys. Rev. Lett. 96(17), 175301 (2006). doi:10.1103/PhysRevLett.96.175301

    Article  ADS  Google Scholar 

  27. V.S. L’vov, S.V. Nazarenko, O. Rudenko, Phys. Rev. B 76(2), 024520 (2007). doi:10.1103/PhysRevB.76.024520

  28. B.W. Silverman, Density Estimation for Statistics and Data Analysis (CRC Press, Boca Raton, 1986)

    Book  MATH  Google Scholar 

  29. A.W. Baggaley, J. Laurie, J. Low Temp. Phys. 178(1–2), 35 (2015). doi:10.1007/s10909-014-1226-1

  30. D.R. Poole, H. Scoffield, C.F. Barenghi, D.C. Samuels, J. Low Temp. Phys. 132(1–2), 97 (2003). doi:10.1023/A:1023797226059

    Article  ADS  Google Scholar 

  31. J.T. Tough, in Progress in Low Temperature Physics, vol. 8, ed. by D.F. Brewer (Elsevier, Amsterdam, 1982), pp. 133–219

  32. M.S. Paoletti, M.E. Fisher, K.R. Sreenivasan, D.P. Lathrop, Phys. Rev. Lett. 101(15), 154501 (2008). doi:10.1103/PhysRevLett.101.154501

    Article  ADS  Google Scholar 

  33. M. La Mantia, D. Duda, M. Rotter, L. Skrbek, J. Fluid Mech. 717 (2013). doi:10.1017/jfm.2013.31

  34. A. Vincent, M. Meneguzzi, J. Fluid Mech. 225, 1 (1991). doi:10.1017/S0022112091001957

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Sergey Nazarenko for the initial discussions associated to this work, and Risto Hänninen for fruitful communications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Laurie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurie, J., Baggaley, A.W. Reconnection Dynamics and Mutual Friction in Quantum Turbulence. J Low Temp Phys 180, 82–94 (2015). https://doi.org/10.1007/s10909-014-1268-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1268-4

Keywords

Navigation