Skip to main content
Log in

Geometry and Topology of Superfluid Turbulence

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Superfluid turbulence consists of a very complex, apparently disordered, tangle of quantized vortex filaments. Until now it has been usual to characterize the vortex tangle mainly in terms of its density (length of vortex line per unit volume). The vortex line density is related to energy, so it has a simple physical interpretation; moreover, it is directly measured in the experiments and is easily computed in the numerical simulations. Unfortunately, the vortex line density does not describe the intrinsic disorder, coiling and linking which occurs within the turbulent vortex tangle due to the combined action of the Biot–Savart law and vortex reconnections. Using ideas borrowed from modern geometry and knot theory, firstly we introduce new measures to describe the geometrical and topological complexity of superfluid turbulence. Secondly, we test these measures on a model problem--the growth of a patch of quantized vorticity--and compare the rate of growth of complexity against the rate of growth of energy and length. Finally, we determine how vortex reconnections depend on the vortex line density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Tough, “Superfluid turbulence,” in Progress in Low Temperature Physics, Vol. 8, D. F. Brewer (ed.), North-Holland, Amsterdam (1987), p. 133.

    Google Scholar 

  2. K. W. Schwarz, Phys. Rev. Lett. 49, 283(1982)

    Google Scholar 

  3. K. W. SchwarzPhys. Rev. B 31, 5782(1985) and

    Google Scholar 

  4. K. W. SchwarzPhys. Rev. B38, 2398(1988).

    Google Scholar 

  5. R. J. Donnelly, Quantized Vortices in Helium II, Cambridge University Press (1991).

  6. S. R. Stalp, R. J. Donnelly, N. Goldenfeld, and W. F. Vinen, Phys. Rev. Lett. 71, 2583(1993).

    Google Scholar 

  7. J. Maurer and P. Tabeling, Europhys. Lett. 43, 29(1998).

    Google Scholar 

  8. P. L. Walstrom, J. G. Weisend, J. R. Maddocks, and S. W. VanSciver, Cryogenics 28, 101(1988).

    Google Scholar 

  9. M. R. Smith, D. K. Hilton, and S. W. VanSciver, Phys. Fluids 11, 751(1999).

    Google Scholar 

  10. R. J. Donnelly, High Reynolds Number Flows Using Liquid and Gaseous Helium, Springer, Heidelberg (1991).

    Google Scholar 

  11. C. F. Barenghi, R. J. Donnelly, and W. F. Vinen, Quantized Vortex Dynamics and Superfluid Turbulence, Springer, Heidelberg (2001).

    Google Scholar 

  12. W. F. Vinen, Phys. Rev. B 61, 1410(2000)

    Google Scholar 

  13. W. F. VinenPhys. Rev. B 64 (13), 134520(2001).

    Google Scholar 

  14. T. Araki, M. Tsubota, and S. K. Nemirowskii, J. Low Temp. Phys. 126, 303(2002).

    Google Scholar 

  15. D. Kivotides, C. F. Barenghi, and D. C. Samuels, Phys. Rev. Lett. 87, 155301(2001).

    Google Scholar 

  16. T. Lipniacki, Phys. Rev. B 64, 214516(2001).

    Google Scholar 

  17. Louis H. Kauffman, Knots and Physics, World Scientific Singapore (1991).

    Google Scholar 

  18. C. F. Barenghi, R. L. Ricca, and D. C. Samuels, Physica D 157, 197(2001).

    Google Scholar 

  19. C. F. Barenghi, R. J. Donnelly, and W. F. Vinen, J. Low Temp. Phys. 52, 89(1983).

    Google Scholar 

  20. J. Koplik and H. Levine, Phys. Rev. Lett. 71, 1375(1993).

    Google Scholar 

  21. D. C. Samuels, in Quantized Vortex Dynamics and Superfluid Turbulence, C. F. Barenghi, R. J. Donnelly, and W. F. Vinen (eds.), Springer, Heidelberg (2001).

    Google Scholar 

  22. D. Kivotides, C. F. Barenghi, and D. C. Samuels, Science 290, 777(2000).

    Google Scholar 

  23. J. C. H. Fung and J. C. Vassilicos, Phys. Rev. E 57, 1677(1998)

    Google Scholar 

  24. N. A. Malik and J. C. Vassilicos, Phys. Fluids 6, 1572(1999)

    Google Scholar 

  25. D. Kivotides, J. C. Vassilicos, C. F. Barenghi, M. A. I. Khan, and D. C. Samuels, Phys. Rev. Lett. 87, 275302(2001).

    Google Scholar 

  26. D. C. Samuels, Phys. Rev. B 46, 11714(1992).

    Google Scholar 

  27. D. C. Samuels, Phys. Rev. B 47, 1107(1993).

    Google Scholar 

  28. C. F. Barenghi, D. C. Samuels, G. H. Bauer, and R. J. Donnelly, Phys. Fluids 9, 2631(1997).

    Google Scholar 

  29. D. K. Cheng, M. W. Cromar, and R. J. Donnelly, Phys. Rev. Lett. 31, 433(1973).

    Google Scholar 

  30. R. M. Ostermeier and W. I. Glaberson, J. Low Temp. Phys. 21 191(1975).

    Google Scholar 

  31. R. L. Ricca, in An Introduction to the Geometry and Topology of Fluid Flows, NATO-ASI, Vol. 47, Kluwer (2001), p. 203.

  32. R. L. Ricca, in Quantized Vortex Dynamics and Superfluid Turbulence, C. F. Barenghi, R. J. Donnelly, and W. F. Vinen (eds.), Lectures Notes in Physics, Vol. 571 (2001), p. 366.

  33. M. H. Freedman and Z.-X. He, Ann. Math. 134, 189(1991).

    Google Scholar 

  34. H. K. Moffatt and R. L. Ricca, Proc. Roy. Soc. London A 439, 411(1992)

    Google Scholar 

  35. R. L. Ricca, in Knot Theory, V. F. R. Jones et al. (eds.), Banach Center Publications, Polish Academy of Sciences, Warsaw, Vol. 42 (1998), p. 321.

    Google Scholar 

  36. M. Tsubota, T. Araki, and W. F. Vinen, arXiv: cond-mat/0206253 (2002).

  37. C. F. Barenghi and D. C. Samuels, Phys. Rev. Lett. 89, 155302(2002).

    Google Scholar 

  38. R. L. Ricca, in Tubes, Sheets, and Singularities in Fluid Dynamics, K. Bajer and H. K. Moffatt (eds.), Kluwer (2002).

  39. M. Leadbeater, T. Winiecki, D. C. Samuels, C. F. Barenghi, and C. S. Adams, Phys. Rev. Lett. 86, 1410(2001).

    Google Scholar 

  40. D. Kivotides, J. C. Vassilicos, D. C. Samuels, and C. F. Barenghi, Phys. Rev. Lett. 86, 3080(2001).

    Google Scholar 

  41. M. Tsubota, T. Araki, and S. K. Nemirowskii, Phys. Rev. B 62, 11751(2000).

    Google Scholar 

  42. S. R. Stalp, L. Skrbek, and R. J. Donnelly, Phys. Rev. Lett. 82, 4831(1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poole, D.R., Scoffield, H., Barenghi, C.F. et al. Geometry and Topology of Superfluid Turbulence. Journal of Low Temperature Physics 132, 97–117 (2003). https://doi.org/10.1023/A:1023797226059

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023797226059

Navigation