Skip to main content
Log in

Reynolds Analogy Based on the Theory of Stochastic Equations and Equivalence of Measures

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A new dependence has been obtained to calculate the Reynolds analogy in a nonisothermal turbulent flow in a circular tube. The formula for the Reynolds analogy was obtained from stochastic turbulence theory, which is based on stochastic differential equations of the laws of conservation of mass, momentum, and energy, and also on the regularities of equivalence of measures between deterministic and random motions. A comparison has been made of the calculation results for the classical formula and for the new formula for various Prandtl numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau, On the problem of turbulence, Dokl. Akad. Nauk SSSR, 44, No. 8, 339–342 (1944).

    MathSciNet  Google Scholar 

  2. A. N. Kolmogorov, Mathematical models of turbulent motion of an incompressible viscous fluid, Usp. Mat. Nauk, 59, No. 1 (355), 5–10 (2004).

  3. E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130–141 (1963); https://doi.org/10.1175/1520-0469.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Ruelle and F. Takens, On the nature of turbulence, Commun. Math. Phys., 20, 167–192 (1971); https://doi.org/10.1007/bf01646553.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Feigenbaum, The transition to aperiodic behavior in turbulent systems, Commun. Math. Phys., 77, No. 1, 65–86 (1980).

    Article  MathSciNet  Google Scholar 

  6. M. I. Rabinovich, Stochastic self-oscillations and turbulence, Usp. Fiz. Nauk, 125, No. 1, 123–168 (1978).

    Article  MathSciNet  Google Scholar 

  7. A. S. Monin, On the nature of turbulence, Usp. Fiz. Nauk, 125, No. 1, 97–122 (1978).

    Article  MathSciNet  Google Scholar 

  8. M. I. Rabinovich and M. M. Sushchik, Coherent structures in turbulent flows, in: Nonlinear Waves. Self-Organization [in Russian], A. V. Gaponov and M. I. Rabinovich, eds., Nauka, Moscow (1983), pp. 58–84.

  9. G. M. Zaslavskii, Stochasticity of Dynamic Systems [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  10. V. V. Struminskii, Origination of turbulence, Dokl. Akad. Nauk SSSR, 307, No. 3, 564–567 (1989).

    MathSciNet  Google Scholar 

  11. A. A. Samarskii, V. I. Mazhukin, P. P. Matus, and I. A. Mikhailik, Z/2-conservative schemes for the Korteweg–de Vries equation, Dokl. Akad. Nauk, 357, No. 4, 458–461 (1997).

    MathSciNet  Google Scholar 

  12. Yu. L. Klimontovich, Problems of statistical theory of open systems: criteria of the relative degree of order of states in the processes of self-organization, Usp. Fiz. Nauk, 158, Issue 1, 59–91 (1989); https://doi.org/10.1070/pu1999v042n01abeh000445.

    Article  Google Scholar 

  13. K. R. Sreenivasan, Fractals and multifractals in fluid turbulence, Annu. Rev. Fluid Mech., 23, 539–600 (1991).

    Article  MathSciNet  Google Scholar 

  14. S. A. Orzag and L. C. Kells, Transition to turbulence in plane Poiseuille and plane Couette flow, J. Fluid Mech., 96, No. 1, 159–205 (1980); https://doi.org/10.1017/s0022112080002066/.

    Article  MATH  Google Scholar 

  15. A. N. Kolmogorov, About the entropy per unit time as a metric invariant of automorphisms, Dokl. Akad. Nauk SSSR, 124, No. 4, 754–755 (1959).

    MathSciNet  MATH  Google Scholar 

  16. A. V. Dmitrenko, The equivalence of measures and stochastic equations for turbulent flows, Dokl. Akad. Nauk, 450, No. 6, 651–658 (2013); https://doi.org/10.1134/s1028335813060098.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. V. Dmitrenko, Equivalent measures and stochastic equations for determination of the turbulent velocity fields and correlation moments of the second order, in: Proc. Int. Conf. “Turbulence and Wave Processes, November 26–28, 2013, Lomonosov Moscow State University, Moscow (2013), pp. 39–40; http://www.dubrovinlab.msu.ru/turbulencemdm100ru.

  18. A. V. Dmitrenko, The Theory of Equivalent Measures and Sets with Repeated Denumerable Fractal Elements. Stochastic Thermodynamics and Turbulence. Determinacy–Randomness Correlator [in Russian], Galleya-Print, Moscow (2013); http://search.rsl.ru/ru/catalog/record/6633402.

  19. A. V. Dmitrenko, Regular Coupling between Deterministic (Laminar) and Random (Turbulent) Motions: Equivalence of Measures, Scientific Discovery Diploma No. 458, Reg. No. 583 of 02.12.2013.

  20. A. V. Dmitrenko, Some analytical results of the theory of equivalence measures and stochastic theory of turbulence for non-isothermal flows, Adv. Stud. Theor. Phys., 8, No. 25, 1101–1111 (2014); https://doi.org/10.12988/astp.2014.49131.

    Article  Google Scholar 

  21. A. V. Dmitrenko, Analytical estimation of velocity and temperature fields in a circular tube on the basis of stochastic equations and equivalence of measures, J. Eng. Phys. Thermophys., 88, No. 6, 1569–1576 (2015); https://doi.org/10.1007/s10891-015-1344-x.

    Article  Google Scholar 

  22. A. V. Dmitrenko, Determination of critical Reynolds numbers for nonisothermal flows with using stochastic theories of turbulence and equivalent measures, Heat Transf. Res., 46, Issue 12, 1102−1112 (2015); https://doi.org/10.1615/HeatTransRes.2015014191; http://dl.begellhouse.com/journals/46784ef93dddff27, forthcoming.html.

  23. A. V. Dmitrenko, Determination of critical Reynolds numbers for nonisothermal flows using stochastic theories of turbulence and equivalent measures, Heat Transf. Res., 47, Issue 1, 41–48 (2016); https://doi.org/10.1615/HeatTransRes.

    Article  MathSciNet  Google Scholar 

  24. A. V. Dmitrenko, The theory of equivalence measures and stochastic theory of turbulence for non-isothermal flow on the flat plate, Int. J. Fluid Mech. Res., 43, Issue 2, 182–187 (2016); https://doi.org/10.1615/InterJFluidMechRes.v43.i2.10.

    Article  Google Scholar 

  25. A. V. Dmitrenko, Turbulent velocity field and correlation moments of the second order determined by stochastic equations. Fractal equation of Landau, Int. J. Fluid Mech. Res., 43, Issue 3, 271–280 (2016); https://doi.org/10.1615/InterJFluidMechRes.v43.i3.10.

    Article  Google Scholar 

  26. Artur V. Dmitrenko, Stochastic equations for continuum and determination of hydraulic drag coefficients for smooth flat plate and smooth round tube taking into account intensity and scale of turbulent flow, Contin. Mech. Thermodyn., 29, No. 1, 1–9 (2017); https://doi.org/10.1007/s00161-016-0514-1.

    Article  MathSciNet  MATH  Google Scholar 

  27. Artur V. Dmitrenko, Analytical determination of the heat transfer coefficient for gas, liquid and liquid metal flows in the tube based on stochastic equations and equivalence of measures for continuum, Contin. Mech. Thermodyn., 29, No. 6, 1197–1205 (2017); https://doi.org/10.1007/s00161-017-0566-x.

    Article  MathSciNet  MATH  Google Scholar 

  28. Artur V. Dmitrenko, Determination of the coefficients of heat transfer and friction in supercritical-pressure nuclear reactors with account of the intensity and scale of flow turbulence on the basis of the theory of stochastic equations and equivalence of measures, J. Eng. Phys. Thermophys., 90, No. 6, 1288–1294 (2017); https://doi.org/10.1007/s10891-017-1685-8.

    Article  MathSciNet  Google Scholar 

  29. A. V. Dmitrenko, Estimation of the critical Rayleigh number as a function of an initial turbulence in the boundary layer of the vertical heated plate, Heat Transf. Res., 48, No. 12, 1102–1112 (2017); https://doi.org/10.1615/HeatTransRes.2017018750.

    Article  Google Scholar 

  30. A. V. Dmitrenko, Results of investigations of nonisothermal turbulent flows based on stochastic equations of the continuum and equivalence of measures, J. Phys.: Conf. Ser.; https://doi.org/10.1088/1742-6596/1009/1/012017.

  31. A. V. Dmitrenko, The stochastic theory of turbulence, IOP Conf. Ser.: Mater. Sci. Eng.; https://doi.org/10.1088/1757-899X/468/1/01202.

  32. A. V. Dmitrenko, Determination of the correlation dimension of an attractor in a pipe based on the theory of stochastic equations and equivalence of measures, J. Phys.: Conf. Series; https://doi.org/10.1088/1742-6596/1291/1/012001.

  33. A. V. Dmitrenko, The correlation dimension of an attractor determined on the base of the theory of equivalence of measures and stochastic equations for continuum, Contin. Mech. Thermodyn., 32, Issue 1, 63–74; https://doi.org/10.1007/s00161-019-00784-0.

  34. A. V. Dmitrenko, The construction of the portrait of the correlation dimension of an attractor in the boundary layer of Earth’s atmosphere, J. Phys.: Conf. Ser.; https://doi.org/10.1088/1742-6596/1301/1/012006.

  35. A. V. Dmitrenko, Some aspects of the formation of the spectrum of atmospheric turbulence, J. Heat Mass Transf., 18, No. 2, 463−476 (2020); https://doi.org/10.17654/HM018020463.

    Article  Google Scholar 

  36. A. V. Dmitrenko, Stochastic Hydrodynamics and Heat Transfer. Turbulence and Correlation Dimension of an Attractor. Theory of Equivalent Measures and Sets with Repeated, Countable Fractal Elements. Stochastic Thermodynamics and Turbulence. Determinacy–Randomness Correlator, Part 2 [in Russian], Galleya-Print, Moscow (2018).

  37. A. V. Dmitrenko, The uncertainty relation in the turbulent continuous medium, Contin. Mech. Thermodyn., 32, Issue 1, 161–171; https://doi.org/10.1007/s00161-019-00792-0.

  38. A. V. Dmitrenko, Formation of a turbulence spectrum in the inertial interval on the basis of the theory of stochastic equations and equivalence of measures, J. Eng. Phys. Thermophys., 93, No. 1, 128–133 (2020)

    Article  MathSciNet  Google Scholar 

  39. P. A. Davidson, Turbulence, Oxford Univ. Press (2004).

    MATH  Google Scholar 

  40. H. Schlichting, Boundary-Layer Theory, 6th edn., McGraw-Hill, New York (1968).

    MATH  Google Scholar 

  41. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, M.I.T. Press (1971).

    Google Scholar 

  42. J. O. Hinze, Turbulence, McGraw-Hill, New York (1975).

    Google Scholar 

  43. S. B. Pope, Turbulent Flows, Cambridge Univ. Press, Cambridge (2000).

    Book  Google Scholar 

  44. A. V. Dmitrenko, Non-self-similarity of flow in the boundary layer of high-temperature gas in a Laval nozzle, Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., No. 1, 38–42 (1993).

  45. A. V. Dmitrenko, Calculation investigations into the turbulent thermal boundary layer in the presence of external-flow pulsations, Proc. 11th Conf. of Young Scientists, Part 2, Moscow Physical-Technical Inst., Moscow (1986), pp. 48–52. Deposited VINITI 08.08.86, No. 5698-B86.

  46. A. V. Dmitrenko, Calculation of pressure pulsations of heterogeneous turbulent flows, Dokl. Akad. Nauk, 415, No. 1, 44–47 (2007); https://doi.org/10.1134/s1028335807120166.

    Article  Google Scholar 

  47. A. V. Dmitrenko, Calculation of the boundary layer of a two-phase medium, High Temp., 40, Issue 5, 706–715 (2002); https://doi.org/10.1023/A:1020436720213.

    Article  Google Scholar 

  48. A. V. Dmitrenko, Principles of Heat and Mass Transfer and Hydrodynamics of Single-Phase and Two-Phase Media. Criterial, Integral, Statistical, and Direct Numerical Methods of Simulation [in Russian], Galleya-Print, Moscow (2008); http://search.rsl.ru/ru/catalog/record/6633402.

  49. V. N. Ievlev, Turbulent Motion of High-Temperature Continuous Media [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  50. S. S. Kutateladze, Fundamentals of Heat Transfer Theory [in Russian], Atomizdat, Moscow (1979).

    Google Scholar 

  51. A. V. Dmitrenko, The theoretical solution for the Reynolds analogy based on the stochastic theory of turbulence, J. Heat Mass Transf., 18, No. 2, 463−476 (2019); https://doi.org/10.17654/HM018020463.

    Article  Google Scholar 

  52. A. V. Dmitrenko, Some aspects of the formation of the spectrum of atmospheric turbulence, J. Heat Mass Transf., 19, No. 1, 201−208 (2020); https://doi.org/10.17654/HM019010201.

    Article  MathSciNet  Google Scholar 

  53. A. V. Dmitrenko, Theoretical solution for spectral function of the turbulent medium based on the stochastic equations and equivalence of measures, Contin. Mech. Thermodyn., 2020; https://doi.org/10.1007/s00161-020-00890-4.

  54. A. V. Dmitrenko and M. A. Kolosova, The possibility of using low-potential heat based on the organic Rankine cycle and determination of hydraulic characteristics of industrial units based on the theory of stochastic equations and equivalence of measures, J. Heat Mass Transf., 21, No. 1, 125–132 (2020); https://doi.org/10.17654/HM021010125.

    Article  Google Scholar 

  55. P. K. Newton, The fate of random initial vorticity distributions for two-dimensional Euler equations on a sphere, J. Fluid Mech., 786, 1–4 (2016).

    Article  MathSciNet  Google Scholar 

  56. A. V. Dmitrenko, Determination of critical Reynolds number in the jet based on the theory of stochastic equations and equivalence of measures, J. Phys.: Conf. Ser., (2020); https://doi.org/10.1088/1742-6596/1705/1/012015.

  57. A. V. Dmitrenko, The spectrum of the turbulence based on theory of stochastic equations and equivalence of measures, J. Phys.: Conf. Ser., (2020); https://doi.org/10.1088/1742-6596/1705/1/012021.

  58. V. V. Shevelev, Stochastic model of heat conduction with heat sources or sinks, J. Eng. Phys. Thermophys., 92, No. 3, 637–647 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Dmitrenko.

Additional information

Dedicated to the memory of Academician of the Russian Academy of Sciences Nikolai Apollonovich Anfimov.

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 1, pp. 195–202, January–February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitrenko, A.V. Reynolds Analogy Based on the Theory of Stochastic Equations and Equivalence of Measures. J Eng Phys Thermophy 94, 186–193 (2021). https://doi.org/10.1007/s10891-021-02296-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02296-8

Keywords

Navigation