Skip to main content
Log in

Stochastic equations for continuum and determination of hydraulic drag coefficients for smooth flat plate and smooth round tube with taking into account intensity and scale of turbulent flow

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The stochastic equations of continuum are used for determining the hydraulic drag coefficients. As a result, the formulas for the hydraulic drag coefficients dependent on the turbulence intensity and scale instead of only on the Reynolds number are proposed for the classic flows of an incompressible fluid along a smooth flat plate and a round smooth tube. It is shown that the new expressions for the classical drag coefficients, which depend only on the Reynolds number, should be obtained from these new general formulas if to use the well-known experimental data for the initial turbulence. It is found that the limitations of classical empirical and semiempirical formulas for the hydraulic drag coefficients and their deviation from the experimental data depend on different parameters of initial fluctuations in the flow for different experiments in a wide range of Reynolds numbers. On the basis of these new dependencies, it is possible to explain that the differences between the experimental results for the fixed Reynolds number are caused by the difference in the values of flow fluctuations for each experiment instead of only due to the systematic error in the processing of experiments. Accordingly, the obtained general dependencies for the smooth flat plate and the smooth round tube can serve as the basis for clarifying the results of experiments and the experimental formulas, which used for continuum flows in different devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Landau, L.D.: Toward the problem of turbulence. Dokl. Akad. Nauk SSSR 44, 339–342 (1944)

    Google Scholar 

  2. Kolmogorov, A.N.: A new metric invariant of transitive dynamic sets and automorphisms of the Lebesgue spaces. Dokl. Akad. Nauk SSSR 119(5), 861–864 (1958)

    MathSciNet  MATH  Google Scholar 

  3. Kolmogorov, A.N.: About the entropy per time unit as a metric invariant of automorphisms. Dokl. Akad. Nauk SSSR 124(4), 754–755 (1959)

    MathSciNet  MATH  Google Scholar 

  4. Kolmogorov, A.N.: Mathematical models of turbulent motion of an incompressible viscous fluid. Usp. Mat. Nauk 59(1(355)), 5–10 (2004)

    Article  MathSciNet  Google Scholar 

  5. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963). doi:10.1175/1520-0469

    Article  ADS  Google Scholar 

  6. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–192, also 23, 343–344 (1971). doi:10.1007/bf01646553

  7. Feigenbaum, M.: The transition to aperiodic behavior in turbulent sets. Commun. Math. Phys. 77(1), 65–86 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Rabinovich, M.I.: Stochastic self-oscillations and turbulence. Usp. Fiz. Nauk 125, 123–168 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  9. Monin, A.S.: On the nature of turbulence. Usp. Fiz. Nauk 125, 97–122 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  10. Rabinovich, M.I., Sushchik, M.M.: Coherent structures in turbulent flows. In: Gaponov, A.V., Rabinovich, M.I. (eds.) Nonlinear Waves. Self-Organization, pp. 58–84. Nauka, Moscow (1983). (in Russian)

    Google Scholar 

  11. Zaslavskii, G.M.: Stochasticity of Dynamic Sets. Nauka, Moscow (1984). (in Russian)

    MATH  Google Scholar 

  12. Struminskii, V.V.: Origination of turbulence. Dokl. Akad. Nauk SSSR 307(3), 564–567 (1989)

    ADS  Google Scholar 

  13. Samarskii, A.A., Mazhukin, V.I., Matus, P.P., Mikhailik, I.A.: Z/2 conservative schemes for the Korteweg-de Vries equations. Dokl. Akad. Nauk 357(4), 458–461 (1997)

    MathSciNet  Google Scholar 

  14. Klimontovich, Y.L.: Problems of the statistical theory of open sets: criteria of the relative degree of the ordering of states in the self-organization processes. Usp. Fiz. Nauk 158(1), 59–91 (1989). doi:10.1070/pu1999v042n01abeh000445

    Article  MathSciNet  Google Scholar 

  15. Sreenivasan, K.R.: Fractals and multifractals in fluid turbulence. Annu. Rev. Fluid Mech. 23, 539–600 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  16. Orzag, S.A., Kells, L.C.: Transition to turbulence in plane Poiseuille and plane Couette flow. J. Fluid Mech. 96(1), 159–205 (1980). doi:10.1017/s0022112080002066/

    Article  ADS  MATH  Google Scholar 

  17. Fursikov, A.V.: Moment theory for Navier–Stokes equations with a random right-hand side. Izv. Ross. Akad. Nauk 56(6), 1273–1315 (1992)

    MathSciNet  Google Scholar 

  18. Gilmor, R.: Catastrophe Theory for Scientists and Engineers. Dover, New York (1993)

    Google Scholar 

  19. Haller, G.: Chaos Near Resonance. Springer, Berlin (1999). doi:10.1007/978-1-4612-1508-0

    Book  MATH  Google Scholar 

  20. Priymak, V.G.: Splitting dynamics of coherent structures in a transitional round-tube flow. Dokl. Phys. 58(10), 457–465 (2013)

    Article  ADS  Google Scholar 

  21. Newton, P.K.: The fate of random initial vorticity distributions for two-dimensional Euler equations on a sphere. J. Fluid Mech. 786, 1–4 (2016). January

    Article  ADS  MathSciNet  Google Scholar 

  22. Chernyshov, A.A., Karelsky, K.V., Petrosyan, A.S.: Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmas. UFN 57, 421–452 (2014). doi:10.3367/UFNe.0184.201405a.0457

    Article  Google Scholar 

  23. Chorny, A., Zhdanov, V.: Turbulent mixing and fast chemical reaction in the confined jet flow at large Schmidt number. Chem. Eng. Sci. 68, 541–554 (2012)

    Article  Google Scholar 

  24. Walter, M., Kornev, N., Hassel, E.: Large Eddy simulation of turbulent reactig mixing at high Schmidt and Reynolds numbers. Chem. Eng. Technol. (2015). doi:10.1002/ceat.201400371

    Google Scholar 

  25. Egorov, I.V., Fedorov, A.V., Soudakov, V.G.: Receptivity of a hypersonic boundary layer over a flat plate with a porous coating. J. Fluid Mech. 601, 165–187 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Dmitrenko, A.V.: Equivalence of measures and stochastic equations for turbulent flows. Dokl. Phys. 58(6), 228–235 (2013). doi:10.1134/s1028335813060098

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Dmitrenko, A.V.: Some analytical results of the theory of equivalence measures and stochastic theory of turbulence for nonisothermal flows. Adv. Stud. Theor. Phys. 8(25), 1101–1111 (2014). doi:10.12988/astp.2014.49131

    Article  Google Scholar 

  28. Dmitrenko, A.V.: Analytical estimation of velocity and temperature fields in a circular tube on the basis of stochastic equations and equivalence of measures. J. Eng. Phys. Thermophys. 88(6), 1569–1576 (2015). doi:10.1007/s10891-015-1344-x

    Article  Google Scholar 

  29. Dmitrenko, A.V.: Determination of critical Reynolds numbers for nonisothermal flows using stochastic theories of turbulence and equivalent measures. Heat Transf. Res. 47(1), 41–48 (2016). doi:10.1615/HeatTransRes.2015014191. http://www.dl.begellhouse.com/journals/

  30. Dmitrenko, A.V.: Theory of Equivalent Measures and Sets with Repeating Denumerable Fractal Elements. Stochastic Thermodynamics and Turbulence. Determinacy–Randomness Correlator (in Russian) Galleya-Print, Moscow (2013). http://search.rsl.ru/ru/catalog/record/6633402

  31. Dmitrenko, A.V.: Regular Coupling between Deterministic (Laminar) and Random (Turbulent) Motions—Equivalenceof Measures. Scientifi Discovery Diploma No. 458, Registration No. 583 of December 2 (2013)

  32. Dmitrenko, A.V.: Equivalent measures and stochastic equations for determination of the turbulent velocity fields and correlation moments of the second order. Abstr. Int. Conf. “Turbulence and Wave Processes,” Lomonosov Moscow State University, November 26–28, 2013, pp. 39–40. Moscow (2013). http://www.dubrovinlab.msu.ru/turbulencemdm100ru

  33. Hinze, J.O.: Turbulence, 2nd edn. McGraw-Hill Book Company, New York (1975)

    Google Scholar 

  34. Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics, vol. 1 and 2. MIT Press, Cambridge (1971)

    Google Scholar 

  35. Schlichting, H.: Boundary-Layer Theory, 6th edn. McGraw-Hill Book Company, New York (1968)

    MATH  Google Scholar 

  36. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000). doi:10.1017/cbo9780511840531

    Book  MATH  Google Scholar 

  37. Davidson, P.A.: Turbulence. Oxford University Press, New York (2004)

    MATH  Google Scholar 

  38. Dmitrenko, A.V.: Fundamentals of Heat and Mass Transfer and Hydrodynamics of Single-Phase and Two-Phase Media. Criteria, Integral and Statistical Methods, and Direct Numerical Simulation. Galleya-Print, Moscow (2008). (in Russian)

    Google Scholar 

  39. Dmitrenko, A.V.: Calculation of pressure pulsations for a turbulent heterogeneous medium. Dokl. Phys. 52(7), 384–387 (2007). doi:10.1134/s1028335807120166

    Article  ADS  MATH  Google Scholar 

  40. Dmitrenko, A.V.: The theory of equivalence measures and stochastic theory of turbulence for non-isothermal flow on the flat plate. Int. J. Fluid Mech. Res. 43(2), 182–187 (2016). doi:10.1615/InterJFluidMechRes.v43.i2. http://www.dl.begellhouse.com/jousrnals

  41. Dmitrenko, A.V.: An Estimation of Turbulent Vector Fields, Spectral and Correlation Functions Depending on Initial Turbulence Based on Stochastic Equations.The Landau Fractal Equation. Int. J. Fluid Mech. Res. 43(3), 82–91 (2016). doi:10.1615/InterJFluidMechRes.v43.i3. http://www.dl.begellhouse.com/journals/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur V. Dmitrenko.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitrenko, A.V. Stochastic equations for continuum and determination of hydraulic drag coefficients for smooth flat plate and smooth round tube with taking into account intensity and scale of turbulent flow. Continuum Mech. Thermodyn. 29, 1–9 (2017). https://doi.org/10.1007/s00161-016-0514-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0514-1

Keywords

Navigation