Skip to main content

Advertisement

Log in

Astrocyte–neuron interactions in neurological disorders

  • Review
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Astrocytes have long been considered as just providing trophic support for neurons in the central nervous system, but recently several studies have highlighted their importance in many functions such as neurotransmission, metabolite and electrolyte homeostasis, cell signaling, inflammation, and synapse modulation. Astrocytes are, in fact, part of a bidirectional crosstalk with neurons. Moreover, increasing evidence is stressing the emerging role of astrocyte dysfunction in the pathophysiology of neurological disorders, including neurodegenerative disease, stroke, epilepsy, migraine, and neuroinflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bushong, E.A., Martone, M.E., Jones, Y.Z., Ellisman, M.H.: Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22, 183–192 (2002)

    Google Scholar 

  2. Oberheim, N.A., Wang, X., Goldman, S., Nedergaard, M.: Astrocytic complexity distinguishes the human brain. Trends Neurosci. 29(10), 547–553 (2006). doi:10.1016/j.tins.2006.08.004

    Article  Google Scholar 

  3. Ogata, K., Kosaka, T.: Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 113, 221–233 (2002). doi:10.1016/S0306-4522(02)00041-6

    Article  Google Scholar 

  4. Kirchhoff, F., Dringen, R., Giaume, C.: Pathways of neuron–astrocyte interactions and their possible role in neuroprotection. Eur. Arch. Psychiatry Clin. Neurosci. 251(4), 159–169 (2001). doi:10.1007/s004060170036

    Article  Google Scholar 

  5. Alvarez-Maubecin, V., Garcia-Hernandez, F., Williams, J.T., Van Bockstaele, E.J.: Functional coupling between neurons and glia. J. Neurosci. 20(11), 4091–4098 (2000)

    Google Scholar 

  6. Rouach, N., Glowinski, J., Giaume, C.: Activity-dependent neuronal control of gap-junctional communication in astrocytes. J. Cell Biol. 149, 1513–1526 (2000). doi:10.1083/jcb.149.7.1513

    Article  Google Scholar 

  7. Leybaert, L., Paemeleire, K., Strahonja, A., Sanderson, M.J.: Inositol-triphosphate-dependent intercellular calcium signalling in and between astrocytes and endothelial cells. Glia 24, 398–407 (1998). doi:10.1002/(SICI)1098-1136(199812)24:4<398::AID-GLIA5>3.0.CO;2-R

    Article  Google Scholar 

  8. Medina, J.M., Giaume, C., Tabernero, A.: Metabolic coupling and the role played by astrocytes in energy distribution and homeostasis. Adv. Exp. Med. Biol. 468, 361–371 (1999)

    Google Scholar 

  9. Bass, N.H., Hess, H.H., Pope, A., Thalheimer, C.: Quantitative cytoarchitectonic distribution of neurons, glia, and DNA in rat cerebral cortex. J. Comp. Neurol. 143, 481–490 (1971). doi:10.1002/cne.901430405

    Article  Google Scholar 

  10. Nedergaard, M., Ransom, B., Goldman, S.A.: New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 26, 523–530 (2003). doi:10.1016/j.tins.2003.08.008

    Article  Google Scholar 

  11. Nett, W.J., Oloff, S.H., McCarthy, K.D.: Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J. Neurophysiol. 87, 528–537 (2002)

    Google Scholar 

  12. Parri, H.R., Gould, T.M., Crunelli, V.: Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat. Neurosci. 4, 803–812 (2001). doi:10.1038/90507

    Article  Google Scholar 

  13. Volterra, A., Meldolesi, J.: Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci. 6(8), 626–640 (2005). doi:10.1038/nrn1722

    Article  Google Scholar 

  14. Hansson, E., Rönnbäck, L.: Glial neuronal signaling in the central nervous system. FASEB J. 17(3), 341–348 (2003). doi:10.1096/fj.02-0429rev

    Article  Google Scholar 

  15. Zonta, M., Carmignoto, G.: Calcium oscillations encoding neuron-to-astrocyte communication. J. Physiol. (Paris) 96(3–4), 193–198 (2002). doi:10.1016/S0928-4257(02)00006-2

    Article  Google Scholar 

  16. Maragakis, N.J., Rothstein, J.D.: Mechanisms of disease: astrocytes in neurodegenerative disease. Nat. Clin. Pract. Neurol. 2(12), 679–689 (2006). doi:10.1038/ncpneuro0355

    Article  Google Scholar 

  17. Abbott, N.J.: Astrocyte–endothelial interactions and blood–brain barrier permeability. J. Anat. 200, 629–638 (2002). doi:10.1046/j.1469-7580.2002.00064.x

    Article  Google Scholar 

  18. Del Zoppo, G.J., Hallenbeck, J.M.: Advances in the vascular pathophysiology of ischemic stroke. Thromb. Res. 98, 73–81 (2000). doi:10.1016/S0049-3848(00)00218-8

    Article  Google Scholar 

  19. Takano, T., Tian, G.F., Peng, W., Lou, N., Libionka, W., Han, X., Nedergaard, M.: Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9(2), 260–267 (2006). doi:10.1038/nn1623

    Article  Google Scholar 

  20. Rubino, E., Rainero, I., Vaula, G., Crasto, F., Gravante, E., Negro, E., Brega, F., Gallone, S., Pinessi, L.: Investigating the genetic role of aquaporin4 gene in migraine. J. Headache Pain 10(2), 111–114 (2009). doi:10.1007/s10194-009-0100-z

    Article  Google Scholar 

  21. Nakahama, K., Nagano, M., Fujioka, A., Shinoda, K., Sasaki, H.: Effect of TPA on aquaporin 4 mRNA expression in cultured rat astrocytes. Glia 25, 240–246 (1999). doi:10.1002/(SICI)1098-1136(19990201)25:3<240::AID-GLIA4>3.0.CO;2-C

    Article  Google Scholar 

  22. Clarke, D.D., Sokoloff, L.: Circulation and energy metabolism of the brain. In: Sigel, G.J., Agranoff, B.W., Albers, R.W., Fisher, S.K., Uhler, M.D. (eds.) Basic Neurochemistry: Molecular, Cellular and Medical Aspects, pp. 637–699. Lippincott-Raven, Philadelphia (1999)

    Google Scholar 

  23. Somjen, G.G.: Nervenkitt: notes on the history of the concept of neuroglia. Glia 1, 2–9 (1988). doi:10.1002/glia.440010103

    Article  Google Scholar 

  24. Wiesinger, H., Hamprecht, B., Dringen, R.: Metabolic pathways for glucose in astrocytes. Glia 21, 22–34 (1997). doi:10.1002/(SICI)1098-1136(199709)21:1<22::AID-GLIA3>3.0.CO;2-3

    Article  Google Scholar 

  25. Chih, C.P., Roberts, E.L., Jr.: Energy substrates for neurons during neural activity: a critical review of the astrocyte–neuron lactate shuttle hypothesis. J. Cereb. Blood Flow Metab. 23(11), 1263–1281 (2003). doi:10.1097/01.WCB.0000081369.51727.6F

    Article  Google Scholar 

  26. Chih, C.P., Lipton, P., Roberts, E.L., Jr.: Do active cerebral neurons really use lactate rather than glucose? Trends Neurosci. 24(10), 573–578 (2001). doi:10.1016/S0166-2236(00)01920-2

    Article  Google Scholar 

  27. Auestad, N., Korsak, R.A., Morrow, J.W., Edmond, J.: Fatty acid oxidation and ketogenesis by astrocytes in primary culture. Neurochemistry 56, 1376–1386 (1991). doi:10.1111/j.1471-4159.1991.tb11435.x

    Article  Google Scholar 

  28. Bixel, M.G., Hamprecht, B.: Generation of ketone bodies from leucine by cultured astroglial cells. J. Neurochem. 65, 2450–2461 (1995)

    Article  Google Scholar 

  29. Canevari, L., Clark, J.B.: Alzheimer’s disease and cholesterol: the fat connection. Neurochem. Res. 32(4–5), 739–750 (2007). doi:10.1007/s11064-006-9200-1

    Article  Google Scholar 

  30. Kofuji, P., Newman, E.A.: Potassium buffering in the central nervous system. Neuroscience 129(4), 1045–1056 (2004). doi:10.1016/j.neuroscience.2004.06.008

    Article  Google Scholar 

  31. Dringen, R., Gutterer, J.M., Hirrlinger, J.: Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur. J. Biochem. 267, 4912–4916 (2000). doi:10.1046/j.1432-1327.2000.01597.x

    Article  Google Scholar 

  32. Schulz, J.B., Lindenau, J., Seyfried, J., Dichgans, J.: Glutathione, oxidative stress and neurodegeneration. Eur. J. Biochem. 267, 4904–4911 (2000). doi:10.1046/j.1432-1327.2000.01595.x

    Article  Google Scholar 

  33. Kranich, O., Hamprecht, B., Dringen, R.: Different preferences in the utilization of amino acids for glutathione synthesis in cultured neurons and astroglial cells derived from rat brain. Neurosci. Lett. 219, 211–214 (1996). doi:10.1016/S0304-3940(96)13217-1

    Article  Google Scholar 

  34. Dringen, R., Kranich, O., Hamprecht, B.: The gamma-glutamyl transpeptidase inhibitor acivicin preserves glutathione released by astroglial cells in culture. Neurochem. Res. 22, 727–733 (1997). doi:10.1023/A:1027310328310

    Article  Google Scholar 

  35. Dringen, R., Pfeiffer, B., Hamprecht, B.: Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J. Neurosci. 19, 562–569 (1999)

    Google Scholar 

  36. Beattie, E.C., Stellwagen, D., Morishita, W., Bresnahan, J.C., Ha, B.K., Von Zastrow, M., Beattie, M.S., Malenka, R.C.: Control of synaptic strength by glial TNF alpha. Science 295, 2282–2285 (2002). doi:10.1126/science.1067859

    Article  ADS  Google Scholar 

  37. Mauch, D.H., Nagler, K., Schumacher, S., Goritz, C., Muller, E.C., Otto, A., Pfrieger, F.W.: CNS synaptogenesis promoted by glia-derived cholesterol. Science 294, 1354–1357 (2001). doi:10.1126/science.294.5545.1354

    Article  ADS  Google Scholar 

  38. Ullian, E.M., Sapperstein, S.K., Christopherson, K.S., Barres, B.A.: Control of synapse number by glia. Science 291, 657–661 (2001). doi:10.1126/science.291.5504.657

    Article  ADS  Google Scholar 

  39. Pfrieger, F.W., Barres, B.A.: Synaptic efficacy enhanced by glial cells in vitro. Science 277, 1684–1687 (1997). doi:10.1126/science.277.5332.1684

    Article  Google Scholar 

  40. Murai, K.K., Nguyen, L.N., Irie, F., Yamaguchi, Y., Pasquale, E.B.: Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat. Neurosci. 6, 153–160 (2003). doi:10.1038/nn994

    Article  Google Scholar 

  41. Klein, R.: Bidirectional modulation of synaptic functions by Eph/ephrin signalling. Nat. Neurosci. 12, 15–20 (2009). doi:10.1038/nn.2231

    Article  Google Scholar 

  42. Piet, R., Vargova, L., Sykova, E., Poulain, D.A., Oliet, S.H.: Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc. Natl. Acad. Sci. U. S. A. 101, 2151–2155 (2004). doi:10.1073/pnas.0308408100

    Article  ADS  Google Scholar 

  43. Giaume, C., McCarthy, K.D.: Control of gap-junctional communication in astrocytic networks. Trends Neurosci. 19(8), 319–325 (1996). doi:10.1016/0166-2236(96)10046-1

    Article  Google Scholar 

  44. Todd, K.J., Serrano, A., Lacaille, J.C., Robitaille, R.: Glial cells in synaptic plasticity. J. Physiol. (Paris) 99, 75–83 (2006). doi:10.1016/j.jphysparis.2005.12.002

    Google Scholar 

  45. Allen, N.J., Barres, B.A.: Signaling between glia and neurons: focus on synaptic plasticity. Curr. Opin. Neurobiol. 15(5), 542–548 (2005). doi:10.1016/j.conb.2005.08.006

    Article  Google Scholar 

  46. Anderson, C.M., Swanson, R.A.: Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32, 1–14 (2000). doi:10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.0.CO;2-W

    Article  Google Scholar 

  47. Araque, A., Li, N., Doyle, R.T., Haydon, P.G.: SNARE protein-dependent glutamate release from astrocytes. J. Neurosci. 20, 666–673 (2000)

    Google Scholar 

  48. Nedergaard, M., Takano, T., Hansen, A.J.: Beyond the role of glutamate as neurotransmitter. Nat. Rev. Neurosci. 3, 748–755 (2002). doi:10.1038/nrn916

    Article  Google Scholar 

  49. Clements, J.D., Lester, R.A., Tong, G., Jahr, C.E., Westbrook, G.L.: The time course of glutamate in the synaptic cleft. Science 258, 1498–1501 (1992). doi:10.1126/science.1359647

    Article  ADS  Google Scholar 

  50. Bergles, D.E., Jahr, C.E.: Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J. Neurosci. 18, 7709–7716 (1998)

    Google Scholar 

  51. Ye, Z.C., Wyeth, M.S., Baltan-Tekkok, S., Ransom, B.R.: Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J. Neurosci. 23(9), 3588–3596 (2003)

    Google Scholar 

  52. Kvamme, E., Roberg, B., Torgner, I.A.: Phosphate-activated glutaminase and mitochondrial glutamine transport in the brain. Neurochem. Res. 25, 1407–1419 (2000). doi:10.1023/A:1007668801570

    Article  Google Scholar 

  53. Cotrina, M.L., Lin, J.H., Lopez-Garcia, J.C., Naus, C.C., Nedergaard, M.: ATP-mediated glia signaling. J. Neurosci. 20, 2835–2844 (2000)

    Google Scholar 

  54. Fam, S.R., Gallagher, C.J., Salter, M.W.: P2Y(1) purinoceptor mediated Ca(2+) signaling and Ca(2+) wave propagation in dorsal spinal cord astrocytes. J. Neurosci. 20, 2800–2808 (2000)

    Google Scholar 

  55. Neary, J.T., McCarthy, M., Cornell-Bell, A., Kang, Y.: Trophic signaling pathways activated by purinergic receptors in rat and human astroglia. Prog. Brain Res. 120, 323–332 (1999). doi:10.1016/S0079-6123(08)63566-9

    Article  Google Scholar 

  56. Priller, J., Reddington, M., Haas, C.A., Kreutzberg, G.W.: Stimulation of P2Y-purinoceptors on astrocytes results in immediate early gene expression and potentiation of neuropeptide action. Neuroscience 85(2), 521–525 (1998). doi:10.1016/S0306-4522(97)00653-2

    Article  Google Scholar 

  57. Conde, J.R., Streit, W.J.: Microglia in the aging brain. J. Neuropathol. Exp. Neurol. 65, 199–203 (2006)

    Google Scholar 

  58. Heneka, M.T., O’Banion, M.K.: Inflammatory processes in Alzheimer’s disease. J. Neuroimmunol. 184, 69–91 (2007). doi:10.1016/j.jneuroim.2006.11.017

    Article  Google Scholar 

  59. Fetler, L., Amigorena, S.: Neuroscience. Brain under surveillance: the microglia patrol. Science 309, 392–393 (2005). doi:10.1126/science.1114852

    Article  Google Scholar 

  60. Banati, R.B., Gehrmann, J., Schubert, P., Kreutzberg, G.W.: Cytotoxicity of microglia. Glia 7(1), 111–118 (1993). doi:10.1002/glia.440070117

    Article  Google Scholar 

  61. Liu, B., Hong, J.S.: Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacol. Exp. Ther. 304, 1–7 (2003). doi:10.1124/jpet.102.035048

    Article  Google Scholar 

  62. Bruce-Keller, A.J.: Microglial–neuronal interactions in synaptic damage and recovery. J. Neurosci. Res. 58, 191–201 (1999). doi:10.1002/(SICI)1097-4547(19991001)58:1<191::AID-JNR17>3.0.CO;2-E

    Article  Google Scholar 

  63. Frohman, E.M., van den Noort, S., Gupta, S.: Astrocytes and intracerebral immune responses. J. Clin. Immunol. 9(1), 1–9 (1989). doi:10.1007/BF00917121

    Article  Google Scholar 

  64. Schipke, C.G., Boucsein, C., Ohlemeyer, C., Kirchhoff, F., Kettenmann, H.: Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices. FASEB J. 16(2), 255–257 (2002)

    Google Scholar 

  65. Ciccarelli, R., Di Iorio, P., D’Alimonte, I., Giuliani, P., Florio, T., Caciagli, F., Middlemiss, P.J., Rathbone, M.P.: Cultured astrocyte proliferation induced by extracellular guanosine involves endogenous adenosine and is raised by the co-presence of microglia. Glia 29, 202–211 (2000). doi:10.1002/(SICI)1098-1136(20000201)29:3<202::AID-GLIA2>3.0.CO;2-C

    Article  Google Scholar 

  66. Illes, P., Nörenberg, W., Gebicke-Haerter, P.J.: Molecular mechanisms of microglial activation. B. Voltage- and purinoceptor-operated channels in microglia. Neurochem. Int. 29, 13–24 (1996). doi:10.1016/0197-0186(95)00133-6

    Article  Google Scholar 

  67. John, G.R., Scemes, E., Suadicani, S.O., Liu, J.S., Charles, P.C., Lee, S.C., Spray, D.C., Brosnan, C.F.: IL-1beta differentially regulates calcium wave propagation between primary human fetal astrocytes via pathways involving P2 receptors and gap junction channels. Proc. Natl. Acad. Sci. U. S. A. 96, 11613–11618 (1999) doi:10.1073/pnas.96.20.11613

    Article  ADS  Google Scholar 

  68. Verderio, C., Matteoli, M.: ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-γ. J. Immunol. 166, 6383–6391 (2001)

    Google Scholar 

  69. Heales, S.J., Lam, A.A., Duncan, A.J., Land, J.M.: Neurodegeneration or neuroprotection: the pivotal role of astrocytes. Neurochem. Res. 29(3), 513–519 (2004). doi:10.1023/B:NERE.0000014822.69384.0f

    Article  Google Scholar 

  70. Mehta, S.L., Manhas, N., Raghubir, R.: Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res. Rev. 54(1), 34–66 (2007). doi:10.1016/j.brainresrev.2006.11.003

    Article  Google Scholar 

  71. Giffard, R.G., Swanson, R.A.: Ischemia-induced programmed cell death in astrocytes. Glia 50(4), 299–306 (2005). doi:10.1002/glia.20167

    Article  Google Scholar 

  72. Mori, T., Tateishi, N., Kagamiishi, Y., Shimoda, T., Satoh, S., Ono, S., Katsube, N., Asano, T.: Attenuation of a delayed increase in the extracellular glutamate level in the peri-infarct area following focal cerebral ischemia by a novel agent ONO-2506. Neurochem. Int. 45(2–3), 381–387 (2004). doi:10.1016/j.neuint.2003.06.001

    Article  Google Scholar 

  73. Bambrick, L., Kristian, T., Fiskum, G.: Astrocyte mitochondrial mechanisms of ischemic brain injury and neuroprotection. Neurochem. Res. 29(3), 601–608 (2004). doi:10.1023/B:NERE.0000014830.06376.e6

    Article  Google Scholar 

  74. Nita, D.A., Nita, V., Spulber, S., Moldovan, M., Popa, D.P., Zagrean, A.M., Zagrean, L.: Oxidative damage following cerebral ischemia depends on reperfusion—a biochemical study in rat. J. Cell. Mol. Med. 5(2), 163–170 (2001). doi:10.1111/j.1582-4934.2001.tb00149.x

    Article  Google Scholar 

  75. Anderson, M.F., Sims, N.R.: The effects of focal ischemia and reperfusion on the glutathione content of mitochondria from rat brain subregions. J. Neurochem. 81(3), 541–549 (2002). doi:10.1046/j.1471-4159.2002.00836.x

    Article  Google Scholar 

  76. Papadopoulos, M.C., Koumenis, I.L., Dugan, L.L., Giffard, R.G.: Vulnerability to glucose deprivation injury correlates with glutathione levels in astrocytes. Brain Res. 748(1–2), 151–156 (1997). doi:10.1016/S0006-8993(96)01293-0

    Article  Google Scholar 

  77. Chen, Y., Vartiainen, N.E., Ying, W., Chan, P.H., Koistinaho, J., Swanson, R.A.: Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J. Neurochem. 77(6), 1601–1610 (2001). doi:10.1046/j.1471-4159.2001.00374.x

    Article  Google Scholar 

  78. Fukuda, S., Fini, C.A., Mabuchi, T., Koziol, J.A., Eggleston, L.L., Jr., del Zoppo, G.J.: Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke 35(4), 998–1004 (2004). doi:10.1161/01.STR.0000119383.76447.05

    Article  Google Scholar 

  79. Del Zoppo, G.J.: Stroke and neurovascular protection. N. Engl. J. Med. 354(6), 553–555 (2006). doi:10.1056/NEJMp058312

    Article  Google Scholar 

  80. Huang, J., Choudhri, T.F., Winfree, C.J., McTaggart, R.A., Kiss, S., Mocco, J., Kim, L.J., Protopsaltis, T.S., Zhang, Y., Pinsky, D.J., Connolly, E.S., Jr.: Postischemic cerebrovascular E-selectin expression mediates tissue injury in murine stroke. Stroke 31(12), 3047–3053 (2000)

    Google Scholar 

  81. Yenari, M.A., Xu, L., Tang, X.N., Qiao, Y., Giffard, R.G.: Microglia potentiate damage to blood-brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke 37(4), 1087–1093 (2006). doi:10.1161/01.STR.0000206281.77178.ac

    Article  Google Scholar 

  82. Anderson, M.F., Blomstrand, F., Blomstrand, C., Eriksson, P.S., Nilsson, M.: Astrocytes and stroke: networking for survival? Neurochem. Res. 28(2), 293–305 (2003). doi:10.1023/A:1022385402197

    Article  Google Scholar 

  83. Thoren, A.E., Helps, S.C., Nilsson, M., Sims, N.R.: Astrocytic function assessed from 1-14C-acetate metabolism after temporary focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 25(4), 440–450 (2005). doi:10.1038/sj.jcbfm.9600035

    Article  Google Scholar 

  84. Kimelberg, H.K.: Tamoxifen as a powerful neuroprotectant in experimental stroke and implications for human stroke therapy. Recent Pat. CNS Drug Discov. 3(2), 104–108 (2008)

    Article  Google Scholar 

  85. Wakade, C., Khan, M.M., De Sevilla, L.M., Zhang, Q.G., Mahesh, V.B., Brann, D.W.: Tamoxifen neuroprotection in cerebral ischemia involves attenuation of kinase activation and superoxide production and potentiation of mitochondrial superoxide dismutase. Endocrinology 149(1), 367–379 (2008). doi:10.1210/en.2007-0899

    Article  Google Scholar 

  86. Kimelberg, H.K.: Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 50(4), 389–397 (2005). doi:10.1002/glia.20174

    Article  Google Scholar 

  87. Nilsson, M., Pekny, M.: Enriched environment and astrocytes in central nervous system regeneration. J. Rehabil. Med. 39(5), 345–352 (2007). doi:10.2340/16501977-0084

    Article  Google Scholar 

  88. Cutrer, F.M., Huerter, K.: Migraine aura. Neurologist 13(3), 118–125 (2007). doi:10.1097/01.nrl.0000252943.82792.38

    Article  Google Scholar 

  89. Sanchez-Del-Rio, M., Reuter, U., Moskowitz, M.A.: New insights into migraine pathophysiology. Curr. Opin. Neurol. 19, 294–298 (2006). doi:10.1097/01.wco.0000227041.23694.5c

    Article  Google Scholar 

  90. Strong, A.J., Dardis, R.: Depolarisation phenomena in traumatic and ischaemic brain injury. In: Pickard, J.D. (eds.) Advances and Technical Standards in Neurosurgery, pp. 3–49. Springer, Wien (2005)

    Chapter  Google Scholar 

  91. Martins-Ferreira, H., Nedergaard, M., Nicholson, C.: Perspectives on spreading depression. Brain Res. Brain Res. Rev. 32, 215–234 (2000). doi:10.1016/S0165-0173(99)00083-1

    Article  Google Scholar 

  92. Silberstein, S.D.: Migraine pathophysiology and its clinical implications. Cephalalgia 24(Suppl 2), 2–7 (2004). doi:10.1111/j.1468-2982.2004.00892.x

    Article  Google Scholar 

  93. Smith, J.M., Bradley, D.P., James, M.F., Huang, C.L.: Physiological studies of cortical spreading depression. Biol. Rev. Camb. Philos. Soc. 81(4), 457–481 (2006). doi:10.1017/S1464793106007081

    Article  Google Scholar 

  94. Ducros, A.: Familial and sporadic hemiplegic migraine. Rev. Neurol. (Paris) 164(3), 216–224 (2008). doi:10.1016/j.neurol.2007.10.003

    Article  MathSciNet  Google Scholar 

  95. Capendeguy, O., Horisberger, J.D.: Functional effects of Na+, K+-ATPase gene mutations linked to familial hemiplegic migraine. Neuromol. Med. 6, 105–116 (2004). doi:10.1385/NMM:6:2-3:105

    Article  Google Scholar 

  96. Blume, W., Lüders, H., Mizrahi, E., Tassinari, C., van Emde Boas, W., Engel, J.: Glossary of descriptive terminology for ictal semiology: report of the ILAE task force on classification and terminology. Epilepsia 42(9), 1212–1218 (2001). doi:10.1046/j.1528-1157.2001.22001.x

    Article  Google Scholar 

  97. Choi, J., Koh, S.: Role of brain inflammation in epileptogenesis. Yonsei Med. J. 49(1), 1–18 (2008). doi:10.3349/ymj.2008.49.1.1

    Article  Google Scholar 

  98. Korn, A., Golan, H., Melamed, I., Pascual-Marqui, R., Friedman, A.: Focal cortical dysfunction and blood–brain barrier disruption in patients with postconcussion syndrome. J. Clin. Neurophysiol. 22, 1–9 (2005). doi:10.1097/01.WNP.0000150973.24324.A7

    Article  Google Scholar 

  99. Schroder, W., Seifert, G., Huttmann, K., Hinterkeuser, S., Steinhauser, C.: AMPA receptor-mediated modulation of inward rectifier K+ channels in astrocytes of mouse hippocampus. Mol. Cell. Neurosci. 19, 447–458 (2002). doi:10.1006/mcne.2001.1080

    Article  Google Scholar 

  100. Jansen, L.A., Uhlmann, E.J., Crino, P.B., Gutmann, D.H., Wong, M.: Epileptogenesis and reduced inward rectifier potassium current in tuberous sclerosis complex-1-deficient astrocytes. Epilepsia 46, 1871–1880 (2005). doi:10.1111/j.1528-1167.2005.00289.x

    Article  Google Scholar 

  101. Proper, E.A., Hoogland, G., Kappen, S.M., Jansen, G.H., Rensen, M.G., Schrama, L.H., van Veelen, C.W., van Rijen, P.C., van Nieuwenhuizen, O., Gispen, W.H., de Graan, P.N.: Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 125, 32–43 (2002). doi:10.1093/brain/awf001

    Article  Google Scholar 

  102. Tian, G.F., Azmi, H., Takano, T., Xu, Q., Peng, W., Lin, J., Oberheim, N., Lou, N., Wang, X., Zielke, H.R., Kang, J., Nedergaard, M.: An astrocytic basis of epilepsy. Nat. Med. 11(9), 973–981 (2005)

    Google Scholar 

  103. Abbott, N.J., Rönnbäck, L., Hansson, E.: Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 7(1), 41–53 (2006). doi:10.1038/nrn1824

    Article  Google Scholar 

  104. Willenborg, D.O., Fordham, S.A., Cowden, W.B., Ramshaw, I.A.: Cytokines and murine autoimmune encephalomyelitis: inhibition or enhancement of disease with antibodies to select cytokines, or by delivery of exogenous cytokines using a recombinant vaccinia virus system. Scand. J. Immunol. 41(1), 31–41 (1995). doi:10.1111/j.1365-3083.1995.tb03530.x

    Article  Google Scholar 

  105. Nair, A., Frederick, T.J., Miller, S.D.: Astrocytes in multiple sclerosis: a product of their environment. Cell. Mol. Life Sci. 65, 2702–2720 (2008). doi:10.1007/s00018-008-8059-5

    Article  Google Scholar 

  106. Farina, C., Aloisi, F., Meinl, E.: Astrocytes are active players in cerebral innate immunity. Trends Immunol. 28, 138–145 (2007). doi:10.1016/j.it.2007.01.005

    Article  Google Scholar 

  107. De Keyser, J., Wilczak, N., Leta, R., Streetland, C.: Astrocytes in multiple sclerosis lack beta-2 adrenergic receptors. Neurology 53, 1628–1633 (1999)

    Google Scholar 

  108. Dong, Y., Benveniste, E.N.: Immune function of astrocytes. Glia 36, 180–190 (2001). doi:10.1002/glia.1107

    Article  Google Scholar 

  109. Gimenez, M.A., Sim, J.E., Russell, J.H.: TNFR1-dependent VCAM-1 expression by astrocytes exposes the CNS to destructive inflammation. J. Neuroimmunol. 151, 116–125 (2004). doi:10.1016/j.jneuroim.2004.02.012

    Article  Google Scholar 

  110. De Keyser, J., Zeinstra, E., Wilczak, N.: Astrocytic beta2-adrenergic receptors and multiple sclerosis. Neurobiol. Dis. 15, 331–339 (2004). doi:10.1016/j.nbd.2003.10.012

    Article  Google Scholar 

  111. Holley, J.E., Gveric, D., Newcombe, J., Cuzner, M.L., Gutowski, N.J.: Astrocyte characterization in the multiple sclerosis glial scar. Neuropathol. Appl. Neurobiol. 29, 434–444 (2003). doi:10.1046/j.1365-2990.2003.00491.x

    Article  Google Scholar 

  112. Thomas, B., Flint Beal, M.: Parkinson’s disease. Hum. Mol. Genet. 16, R183–R194 (2007). doi:10.1093/hmg/ddm159

    Article  Google Scholar 

  113. Sheng, J.G., Shirabe, S., Nishiyama, N., Schwartz, J.P.: Alterations in striatal glial fibrillary acidic protein expression in response to 6-hydroxydopamine-induced denervation. Exp. Brain Res. 95, 450–456 (1993). doi:10.1007/BF00227138

    Article  Google Scholar 

  114. Kohutnicka, M., Lewandowska, E., Kurkowska-Jastrzebska, I., Czlonkowski, A., Czlonkowska, A.: Microglial and astrocytic involvement in a murine model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology 39, 167–180 (1998). doi:10.1016/S0162-3109(98)00022-8

    Article  Google Scholar 

  115. Hunot, S., Bernard, V., Faucheux, B., Boissiere, F., Leguern, E., Brana, C., Gautris, P.P., Guerin, J., Bloch, B., Agid, Y., Hirsch, E.C.: Glial cell line-derived neurotrophic factor (GDNF) gene expression in the human brain: a post mortem in situ hybridization study with special reference to Parkinson’s disease. J. Neural Transm. 103, 1043–1052 (1996). doi:10.1007/BF01291789

    Article  Google Scholar 

  116. Kordower, J.H., Palfi, S., Chen, E.Y., Ma, S.Y., Sendera, T., Cochran, E.J., Cochran, E.J., Mufson, E.J., Penn, R., Goetz, C.G., Comella, C.D.: Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann. Neurol. 46, 419–424 (1999). doi:10.1002/1531-8249(199909)46:3<419::AID-ANA21>3.0.CO;2-Q

    Article  Google Scholar 

  117. Emerit, J., Edeas, M., Bricaire, F.: Neurodegenerative diseases and oxidative stress. Biomed. Pharmacother. 58(1), 39–46 (2004). doi:10.1016/j.biopha.2003.11.004

    Article  Google Scholar 

  118. Dexter, D.T., Carter, C.J., Wells, F.R., Javoy-Agid, F., Agid, Y., Lees, A., Jenner, P., Marsden, C.D.: Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J. Neurochem. 52, 381–389 (1989). doi:10.1111/j.1471-4159.1989.tb09133.x

    Article  Google Scholar 

  119. Kastner, A., Hirsch, E.C., Lejeune, O., Javoy-Agid, F., Rascol, O., Agid, Y.: Is the vulnerability of neurons in the substantia nigra of patients with Parkinson’s disease related to their neuromelanin content? J. Neurochem. 59, 1080–1089 (1992). doi:10.1111/j.1471-4159.1992.tb08350.x

    Article  Google Scholar 

  120. Jellinger, K., Kienzl, E., Rumpelmair, G., Riederer, P., Stachelberger, H., Ben-Shachar, D., Youdim, M.B.: Iron melanin complex in substantia nigra of parkinsonian brains: an X-ray microanalysis. J. Neurochem. 59, 1168–1171 (1992). doi:10.1111/j.1471-4159.1992.tb08362.x

    Article  Google Scholar 

  121. Sian, J., Dexter, D.T., Lees, A.J., Daniel, S., Agid, Y., Javoy-Agid, F., Jenner, P., Marsden, C.D.: Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann. Neurol. 36, 348–355 (1994). doi:10.1002/ana.410360305

    Article  Google Scholar 

  122. Desagher, S., Glowinski, J., Premont, J.: Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J. Neurosci. 1, 9060–9067 (1997)

    Google Scholar 

  123. Kastner, A., Anglade, P., Bounaix, C., Damier, P., Javoy-Agid, F., Bromet, N., Agid, Y., Hirsch, E.C.: Immunohistochemical study of catechol-O methyltransferase in the human mesostriatal system. Neuroscience 62, 449–457 (1994). doi:10.1016/0306-4522(94)90379-4

    Article  Google Scholar 

  124. Hunot, S., Dugas, N., Faucheux, B., Hartmann, A., Tardieu, M., Debre, P., Agid, Y., Dugas, B., Hirsch, E.C.: FcεRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J. Neurosci. 19, 3440–3447 (1999)

    Google Scholar 

  125. Mogi, M., Harada, M., Narabayashi, H., Inagaki, H., Minami, M., Nagatsu, T.: Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci. Lett. 211, 13–16 (1996). doi:10.1016/0304-3940(96)12706-3

    Article  Google Scholar 

  126. Mogi, M., Harada, M., Riederer, P., Narabayashi, H., Fujita, K., Nagatsu, T.: Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci. Lett. 165, 208–210 (1994). doi:10.1016/0304-3940(94)90746-3

    Article  Google Scholar 

  127. McGeer, P.L., Schwab, C., Parent, A., Doudet, D.: Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann. Neurol. 54, 599–604 (2003). doi:10.1002/ana.10728

    Article  Google Scholar 

  128. Mogi, M., Harada, M., Kondo, T., Riederer, P., Nagatsu, T.: Brain beta 2-microglobulin levels are elevated in the striatum in Parkinson’s disease. J. Neural Transm. Parkinson’s Dis. Dement. Sect. 9, 87–92 (1995). doi:10.1007/BF02252965

    Article  Google Scholar 

  129. Dugas, B., Mossalayi, M.D., Damais, C., Kolb, J.P.: Nitric oxide production by human monocytes: evidence for a role of CD23. Immunol. Today 16, 574–580 (1995). doi:10.1016/0167-5699(95)80080-8

    Article  Google Scholar 

  130. Arock, M., Le Goff, L., Becherel, P.A., Dugas, B., Debre, P., Mossalayi, M.D.: Involvement of FcεRII/CD23 and L-arginine dependent pathway in IgE-mediated activation of human eosinophils. Biochem. Biophys. Res. Commun. 203, 265–271 (1994). doi:10.1006/bbrc.1994.2177

    Article  Google Scholar 

  131. Juckett, M., Zheng, Y., Yuan, H., Pastor, T., Antholine, W., Weber, M., Vercellotti, G.: Heme and the endothelium. Effects of nitric oxide on catalytic iron and heme degradation by heme oxygenase. J. Biol. Chem. 273(36), 23388–23397 (1998). doi:10.1074/jbc.273.36.23388

    Article  Google Scholar 

  132. O’Banion, M.K.: Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology. Crit. Rev. Neurobiol. 13, 45–82 (1999)

    Google Scholar 

  133. Teismann, P., Tieu, K., Choi, D.K., Wu, D.C., Naini, A., Hunot, S., Vila, M., Jackson-Lewis, V., Przedborski, S.: Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc. Natl. Acad. Sci. U. S. A. 100, 5473–5478 (2003). doi:10.1073/pnas.0837397100

    Article  ADS  Google Scholar 

  134. Mogi, M., Togari, A., Kondo, T., Mizuno, Y., Komure, O., Kuno, S., Ichinose, H., Nagatsu, T.: Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J. Neural Transm. 107, 335–341 (2000). doi:10.1007/s007020050028

    Article  Google Scholar 

  135. Rocchi, A., Pellegrini, S., Siciliano, G., Murri, L.: Causative and susceptibility genes for Alzheimer’s disease: a review. Brain Res. Bull. 61(1), 1–24 (2003). doi:10.1016/S0361-9230(03)00067-4

    Article  Google Scholar 

  136. Rossner, S., Lange-Dohna, C., Zeitschel, U., Perez-Polo, J.R.: Alzheimer’s disease beta-secretase BACE1 is not a neuron-specific enzyme. J. Neurochem. 92(2), 226–234 (2005). doi:10.1111/j.1471-4159.2004.02857.x

    Article  Google Scholar 

  137. Meda, L., Baron, P., Scarlato, G.: Glial activation in Alzheimer’s disease: the role of Aβ and its associated proteins. Neurobiol. Aging 22(6), 885–893 (2001). doi:10.1016/S0197-4580(01)00307-4

    Article  Google Scholar 

  138. Schubert, P., Ogata, T., Marchini, C., Ferroni, S.: Glia-related pathomechanisms in Alzheimer’s disease: a therapeutic target? Mech. Ageing Dev. 123(1), 47–57 (2001). doi:10.1016/S0047-6374(01)00343-8

    Article  Google Scholar 

  139. Heneka, M.T., Sastre, M., Dumitrescu-Ozimek, L., Dewachter, I., Walter, J., Klockgether, T., Van Leuven, F.: Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J. Neuroinflammation 2, 22 (2005). doi:10.1186/1742-2094-2-22

    Article  Google Scholar 

  140. Deane, R., Wu, Z., Zlokovic, B.V.: RAGE (yin) versus LRP (yang) balance regulates Alzheimer amyloid beta-peptide clearance through transport across the blood–brain barrier. Stroke 35(Suppl 1(11)), 2628–2631 (2004). doi:10.1161/01.STR.0000143452.85382.d1

    Article  Google Scholar 

  141. Farfara, D., Lifshitz, V., Frenkel, D.: Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer’s disease. J. Cell. Mol. Med. 12(3), 762–780 (2008). doi:10.1111/j.1582-4934.2008.00314.x

    Article  Google Scholar 

  142. Colombo, J.A., Quinn, B., Puissant, V.: Disruption of astroglial interlaminar processes in Alzheimer’s disease. Brain Res. Bull. 58(2), 235–242 (2002). doi:10.1016/S0361-9230(02)00785-2

    Article  Google Scholar 

  143. Mattson, M.P., Chan, S.L.: Calcium orchestrates apoptosis. Nat. Cell Biol. 5(12), 1051–1061 (2003). doi:10.1038/ncb1203-1041

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ricci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricci, G., Volpi, L., Pasquali, L. et al. Astrocyte–neuron interactions in neurological disorders. J Biol Phys 35, 317–336 (2009). https://doi.org/10.1007/s10867-009-9157-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-009-9157-9

Keywords

Navigation