Skip to main content

Advertisement

Log in

Flexible multifunctional TPU strain sensors with improved sensitivity and wide sensing range based on MXene/AgNWs

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Flexible electronic devices have received increasing attention for potential application in wearable human motion monitoring, healthcare, and thermal management. Nevertheless, flexible electronics with high sensitivity and a wide strain range for accurate health monitoring of human movement is an urgent issue that needs to be addressed. Herein, flexible sensors with 3D conductive networks based on electrospun thermoplastic polyurethane (TPU) mats were prepared by coupling silver nanowires (AgNWs) and MXene Ti3C2Tx for human health monitoring and thermal management. The strain sensors containing only AgNWs or Ti3C2Tx conductive materials exhibit high sensitivity and a wide strain range because of the difference in the structure of conductive network between 1D AgNWs and 2D Ti3C2Tx nanomaterials, respectively. The advantages of 3D conductive networks are demonstrated in the sensitivity and sensing range of the MXene/AgNWs/TPU sensor due to the interaction between AgNWs and Ti3C2Tx and the 3D conductive network formed. The MXene/AgNWs/TPU sensor can be used not only for human physiological health monitoring (pulse monitoring) but also for human motion monitoring (elbow motion), because of its wide strain detection range (0-120% strain) and high sensitivity (measurement factor up to 33,100). As MXene is decorated by hydrogen bonding or electrostatic interaction, the MXene/AgNWs/TPU strain sensor exhibits excellent cycling stability (1000 cycles). Furthermore, the outstanding electrical heating and photothermal performances of the MXene/AgNWs/TPU strain sensors are served as an important function in protecting human health in cold environments and assisting the body in medical rehabilitation. Based on their excellent performance, the strain sensors not only monitor body movements over a wide strain range (e.g., knee flexion) and subtle human physiological signals (e.g., pulse waves), showing great potential for applications in human health monitoring and thermal management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. M. Amjadi, K.-U. Kyung, I. Park, M. Sitti, Stretchable, Skin-Mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater 26(11), 1678 (2016). Doi:https://doi.org/10.1002/adfm.201504755

    Article  CAS  Google Scholar 

  2. Y. Cai, J. Shen, G. Ge, Y. Zhang, W. Jin, W. Huang, J. Shao, J. Yang, X. Dong, Stretchable Ti3C2Tx MXene/Carbon Nanotube Composite based strain sensor with Ultrahigh Sensitivity and Tunable sensing Range. ACS Nano. 12(1), 56 (2018). Doi:https://doi.org/10.1021/acsnano.7b06251

    Article  CAS  Google Scholar 

  3. J. Huang, M. Zhao, Y. Hao, D. Li, J. Feng, F. Huang, Q. Wei, Flexible, stretchable, and multifunctional electrospun polyurethane mats with 0D–1D-2D ternary nanocomposite-based conductive networks. Adv. Electron. Mater. (2020). https://doi.org/10.1002/aelm.202000840

    Article  Google Scholar 

  4. H. Zhang, W. Niu, S. Zhang, Extremely stretchable, stable, and durable strain sensors based on double-network organogels. ACS Appl. Mater. Interfaces 10(38), 32640 (2018). Doi:https://doi.org/10.1021/acsami.8b08873

    Article  CAS  Google Scholar 

  5. S. Wu, S. Peng, Y. Yu, C.H. Wang, Strategies for designing stretchable strain sensors and conductors. Adv. Mater. Technol. (2020). https://doi.org/10.1002/admt.201900908

    Article  Google Scholar 

  6. Z. Li, C. Ma, Y. Wen, Z. Wei, X. Xing, J. Chu, C. Yu, K. Wang, Z.-K. Wang, Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 13(1), 196 (2019). Doi:https://doi.org/10.1007/s12274-019-2597-z

    Article  CAS  Google Scholar 

  7. Y. Yang, Z. Cao, P. He, L. Shi, G. Ding, R. Wang, J. Sun, Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy (2019). https://doi.org/10.1016/j.nanoen.2019.104134

    Article  Google Scholar 

  8. L. Wang, K.J. Loh, Wearable carbon nanotube-based fabric sensors for monitoring human physiological performance. Smart Mater. Struct. (2017). https://doi.org/10.1088/1361-665X/aa6849

    Article  Google Scholar 

  9. J. Ren, W. Zhang, Y. Wang, Y. Wang, J. Zhou, L. Dai, M. Xu, A graphene rheostat for highly durable and stretchable strain sensor. InfoMat 1(3), 396 (2019). Doi:https://doi.org/10.1002/inf2.12030

    Article  CAS  Google Scholar 

  10. M. Amjadi, Y.J. Yoon, I. Park, Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites. Nanotechnology. 26(37), 375501 (2015). Doi:https://doi.org/10.1088/0957-4484/26/37/375501

    Article  CAS  Google Scholar 

  11. Q. Liu, J. Chen, Y. Li, G. Shi, High-performance strain sensors with Fish-Scale-Like Graphene-Sensing layers for full-range detection of human motions. ACS Nano. 10(8), 7901 (2016). Doi:https://doi.org/10.1021/acsnano.6b03813

    Article  CAS  Google Scholar 

  12. S.W. Lee, J.J. Park, B.H. Park, S.C. Mun, Y.T. Park, K. Liao, T.S. Seo, W.J. Hyun, O.O. Park, Enhanced sensitivity of patterned graphene strain sensors used for monitoring subtle human body motions. ACS Appl. Mater. Interfaces 9(12), 11176 (2017). Doi:https://doi.org/10.1021/acsami.7b01551

    Article  CAS  Google Scholar 

  13. Y. Cheng, R. Wang, J. Sun, L. Gao, A. Stretchable, and Highly sensitive graphene-based Fiber for sensing Tensile strain, bending, and Torsion. Adv. Mater. 27(45), 7365 (2015). Doi:https://doi.org/10.1002/adma.201503558

    Article  CAS  Google Scholar 

  14. W. Zhai, C. Wang, S. Wang, J. Li, Y. Zhao, P. Zhan, K. Dai, G. Zheng, C. Liu, C. Shen, Ultra-stretchable and multifunctional wearable electronics for superior electromagnetic interference shielding, electrical therapy and biomotion monitoring. J. Mater. Chem. A 9(11), 7238 (2021). Doi:https://doi.org/10.1039/d0ta10991f

    Article  CAS  Google Scholar 

  15. J. Dong, S. Luo, S. Ning, G. Yang, D. Pan, Y. Ji, Y. Feng, F. Su, C. Liu, MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Appl. Mater. Interfaces 13(50), 60478 (2021). https://doi.org/10.1021/acsami.1c19890

    Article  CAS  Google Scholar 

  16. R. Yin, S. Yang, Q. Li, S. Zhang, H. Liu, J. Han, C. Liu, C. Shen, Flexible conductive ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications. Sci. Bull. 65(11), 899 (2020). Doi:https://doi.org/10.1016/j.scib.2020.02.020

    Article  CAS  Google Scholar 

  17. Q. Gao, Y. Pan, G. Zheng, C. Liu, C. Shen, X. Liu, Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 4(2), 274 (2021). Doi:https://doi.org/10.1007/s42114-021-00221-4

    Article  CAS  Google Scholar 

  18. M. Chao, Y. Wang, D. Ma, X. Wu, W. Zhang, L. Zhang, P. Wan, Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing. Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2020.105187

    Article  Google Scholar 

  19. K. Yang, F. Yin, D. Xia, H. Peng, J. Yang, W. Yuan, A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale. 11(20), 9949 (2019). Doi:https://doi.org/10.1039/c9nr00488b

    Article  CAS  Google Scholar 

  20. Y. Cheng, R. Wang, H. Zhai, J. Sun, Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain. Nanoscale. 9(11), 3834 (2017). Doi:https://doi.org/10.1039/c7nr00121e

    Article  CAS  Google Scholar 

  21. J.C. Yeo, H.K. Yap, W. Xi, Z. Wang, C.-H. Yeow, C.T. Lim, Flexible and stretchable strain sensing actuator for wearable soft robotic applications. Adv. Mater. Technol. (2016). https://doi.org/10.1002/admt.201600018

    Article  Google Scholar 

  22. E. Roh, B.U. Hwang, D. Kim, B.Y. Kim, N.E. Lee, Stretchable, transparent, ultrasensitive, and patchable strain Sensor for Human-Machine Interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9(6), 6252 (2015). https://doi.org/10.1021/acsnano.5b01613

    Article  CAS  Google Scholar 

  23. D. Rus, M.T. Tolley, Design, fabrication and control of soft robots. Nature. 521(7553), 467 (2015). Doi:https://doi.org/10.1038/nature14543

    Article  CAS  Google Scholar 

  24. X. Liu, J. Miao, Q. Fan, W. Zhang, X. Zuo, M. Tian, S. Zhu, X. Zhang, L. Qu, Smart Textile based on 3D stretchable silver nanowires/MXene conductive networks for personal healthcare and thermal management. ACS Appl. Mater. Interfaces 13(47), 56607 (2021). https://doi.org/10.1021/acsami.1c18828

    Article  CAS  Google Scholar 

  25. S. Ma, Z. Xu, Z. Jia, L. Chen, H. Zhu, Y. Chen, X. Guo, M. Du, Facile fabrication of carbon fiber skeleton structure of MoS2 supported on 2D MXene composite with highly efficient and stable hydrogen evolution reaction. Compos. Sci. Technol. (2022). https://doi.org/10.1016/j.compscitech.2022.109380

    Article  Google Scholar 

  26. J.-H. Pu, X. Zhao, X.-J. Zha, L. Bai, K. Ke, R.-Y. Bao, Z.-Y. Liu, M.-B. Yang, W. Yang, Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. J. Mater. Chem. A 7(26), 15913 (2019). Doi:https://doi.org/10.1039/c9ta04352g

    Article  CAS  Google Scholar 

  27. X. Xu, Y. Chen, P. He, S. Wang, K. Ling, L. Liu, P. Lei, X. Huang, H. Zhao, J. Cao, J. Yang, Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 14(8), 2875 (2021). https://doi.org/10.1007/s12274-021-3536-3

    Article  CAS  Google Scholar 

  28. S. Yang, D.-X. Yan, Y. Li, J. Lei, Z.-M. Li, Flexible poly(vinylidene fluoride)-MXene/silver nanowire electromagnetic shielding films with joule heating performance. Ind. Eng. Chem. Res 60(27), 9824 (2021). https://doi.org/10.1021/acs.iecr.1c01632

    Article  CAS  Google Scholar 

  29. B. Zhou, X. Han, L. Li, Y. Feng, T. Fang, G. Zheng, B. Wang, K. Dai, C. Liu, C. Shen, Ultrathin, flexible transparent Joule heater with fast response time based on single-walled carbon nanotubes/poly(vinyl alcohol) film. Compos. Sci. Technol. (2019). https://doi.org/10.1016/j.compscitech.2019.107796

    Article  Google Scholar 

  30. S. Li, Y. Zhang, Y. Wang, K. Xia, Z. Yin, H. Wang, M. Zhang, X. Liang, H. Lu, M. Zhu, H. Wang, X. Shen, Y. Zhang, Physical sensors for skin-inspired electronics. InfoMat 2(1), 184 (2019). Doi:https://doi.org/10.1002/inf2.12060

    Article  CAS  Google Scholar 

  31. Z. Ma, S. Kang, J. Ma, L. Shao, A. Wei, C. Liang, J. Gu, B. Yang, D. Dong, L. Wei, Z. Ji, High-performance and rapid-response electrical heaters based on ultraflexible, heat-resistant, and mechanically strong aramid nanofiber/ag nanowire nanocomposite papers. ACS Nano 13(7), 7578 (2019). https://doi.org/10.1021/acsnano.9b00434

    Article  CAS  Google Scholar 

  32. X. Zhu, J. Xu, F. Qin, Z. Yan, A. Guo, C. Kan, Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires. Nanoscale. 12(27), 14589 (2020). Doi:https://doi.org/10.1039/d0nr03790g

    Article  CAS  Google Scholar 

  33. P. Sambyal, A. Iqbal, J. Hong, H. Kim, M.K. Kim, S.M. Hong, M. Han, Y. Gogotsi, C.M. Koo, Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 11(41), 38046 (2019). https://doi.org/10.1021/acsami.9b12550

    Article  CAS  Google Scholar 

  34. Y. Zheng, R. Yin, Y. Zhao, H. Liu, D. Zhang, X. Shi, B. Zhang, C. Liu, C. Shen, Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.127720

    Article  Google Scholar 

  35. X. Shi, H. Wang, X. Xie, Q. Xue, J. Zhang, S. Kang, C. Wang, J. Liang, Y. Chen, Bioinspired ultrasensitive and stretchable mxene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano 13(1), 649 (2019). https://doi.org/10.1021/acsnano.8b07805

    Article  CAS  Google Scholar 

  36. B. Zhou, Q. Li, P. Xu, Y. Feng, J. Ma, C. Liu, C. Shen, An asymmetric sandwich structural cellulose-based film with self-supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management. Nanoscale. 13(4), 2378 (2021). Doi:https://doi.org/10.1039/d0nr07840a

    Article  CAS  Google Scholar 

  37. Z. Zhou, Q. Song, B. Huang, S. Feng, C. Lu, Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano (2021). https://doi.org/10.1021/acsnano.1c04526

    Article  Google Scholar 

  38. Y. Zhang, E. Ren, A. Li, C. Cui, R. Guo, H. Tang, H. Xiao, M. Zhou, W. Qin, X. Wang, L. Liu, A porous self-healing hydrogel with an island-bridge structure for strain and pressure sensors. J. Mater. Chem. B 9(3), 719 (2021). Doi:https://doi.org/10.1039/d0tb01926g

    Article  CAS  Google Scholar 

  39. Y. Zhang, E. Ren, H. Tang, A. Li, C. Cui, R. Guo, M. Zhou, S. Jiang, H. Shen, Carbon nanotubes/acetylene black/Ecoflex with corrugated microcracks for enhanced sensitivity for stretchable strain sensors. J. Mater. Science: Mater. Electron. 31(17), 14145 (2020). Doi:https://doi.org/10.1007/s10854-020-03969-5

    Article  CAS  Google Scholar 

  40. Q. Liu, Y. Zhang, A. Li, E. Ren, C. Cui, M. Zhou, R. Guo, H. Xiao, S. Jiang, W. Qin, Reduced graphene oxide-coated carbonized cotton fabric wearable strain sensors with ultralow detection limit. J. Mater. Science: Mater. Electron. 31(20), 17233 (2020). Doi:https://doi.org/10.1007/s10854-020-04278-7

    Article  CAS  Google Scholar 

  41. Y. Zhang, H. Tang, A. Li, C. Cui, R. Guo, H. Xiao, E. Ren, S. Lin, J. Lan, S. Jiang, Extremely stretchable strain sensors with ultra-high sensitivity based on carbon nanotubes and graphene for human motion detection. J. Mater. Science: Mater. Electron. 31(15), 12608 (2020). Doi:https://doi.org/10.1007/s10854-020-03811-y

    Article  CAS  Google Scholar 

  42. S. Sharma, A. Chhetry, S. Zhang, H. Yoon, C. Park, H. Kim, M. Sharifuzzaman, X. Hui, J.Y. Park, Hydrogen-bond-triggered hybrid Nanofibrous membrane-based wearable pressure sensor with Ultrahigh Sensitivity over a broad pressure range. ACS Nano. 15(3), 4380 (2021). Doi:https://doi.org/10.1021/acsnano.0c07847

    Article  CAS  Google Scholar 

  43. X. Li, J. Yang, W. Yuan, P. Ji, Z. Xu, S. Shi, X. Han, W. Niu, F. Yin, Microstructured MXene/polyurethane fibrous membrane for highly sensitive strain sensing with ultra-wide and tunable sensing range. Compos. Commun. (2021). https://doi.org/10.1016/j.coco.2020.100586

    Article  Google Scholar 

  44. H. Li, Z. Du, Preparation of a highly sensitive and stretchable strain sensor of MXene/Silver nanocomposite-based yarn and wearable applications. ACS Appl. Mater. Interfaces 11(49), 45930 (2019). Doi:https://doi.org/10.1021/acsami.9b19242

    Article  CAS  Google Scholar 

  45. Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue, W. Liu, L. Wang, S. Jia, C. Li, T. Qi, J. Wang, Y. Gao, Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 14(2), 2145 (2020). https://doi.org/10.1021/acsnano.9b08952

    Article  CAS  Google Scholar 

  46. H. Jiang, L. Zheng, Z. Liu, X. Wang, Two-dimensional materials: from mechanical properties to flexible mechanical sensors. InfoMat 2(6), 1077 (2019). Doi:https://doi.org/10.1002/inf2.12072

    Article  CAS  Google Scholar 

  47. B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng, B. Wang, D. Zhang, J. Ma, C. Liu, Flexible, robust, and multifunctional electromagnetic interference shielding Film with Alternating Cellulose Nanofiber and MXene Layers. ACS Appl. Mater. Interfaces 12(4), 4895 (2020). Doi:https://doi.org/10.1021/acsami.9b19768

    Article  CAS  Google Scholar 

  48. Z.-Y. Li, W. Zhai, Y.-F. Yu, G.-J. Li, P.-F. Zhan, J.-W. Xu, G.-Q. Zheng, K. Dai, C.-T. Liu, C.-Y. Shen, An ultrasensitive, durable and stretchable strain Sensor with Crack-wrinkle structure for human motion monitoring. Chin. J. Polym. Sci 39(3), 316 (2020). Doi:https://doi.org/10.1007/s10118-021-2500-8

    Article  CAS  Google Scholar 

  49. S. Gong, D.T.H. Lai, B. Su, K.J. Si, Z. Ma, L.W. Yap, P. Guo, W. Cheng, Highly stretchy black gold E-skin nanopatches as highly sensitive wearable biomedical sensors. Adv. Electron. Mater. (2015). https://doi.org/10.1002/aelm.201400063

    Article  Google Scholar 

  50. W.-W. Kong, C.-G. Zhou, K. Dai, L.-C. Jia, D.-X. Yan, Z.-M. Li, Highly stretchable and durable fibrous strain sensor with growth ring-like spiral structure for wearable electronics. Compos. Part B: Eng. (2021). https://doi.org/10.1016/j.compositesb.2021.109275

    Article  Google Scholar 

  51. M. Gong, L. Yue, J. Kong, X. Lin, L. Zhang, J. Wang, D. Wang, Knittable and sewable spandex yarn with nacre-mimetic composite coating for wearable health monitoring and thermo- and antibacterial therapies. ACS Appl. Mater. Interfaces 13(7), 9053 (2021). https://doi.org/10.1021/acsami.1c00864

    Article  CAS  Google Scholar 

  52. L. Lin, Y. Choi, T. Chen, H. Kim, K.S. Lee, J. Kang, L. Lyu, J. Gao, Y. Piao, Superhydrophobic and wearable TPU based nanofiber strain sensor with outstanding sensitivity for high-quality body motion monitoring. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.129513

    Article  Google Scholar 

  53. S. Niu, X. Chang, Z. Zhu, Z. Qin, J. Li, Y. Jiang, D. Wang, C. Yang, Y. Gao, S. Sun, Low-temperature wearable strain sensor based on a silver nanowires/graphene composite with a near-zero temperature coefficient of resistance. ACS Appl. Mater. Interfaces 13(46), 55307 (2021). https://doi.org/10.1021/acsami.1c14671

    Article  CAS  Google Scholar 

  54. H. Wang, R. Zhou, D. Li, L. Zhang, G. Ren, L. Wang, J. Liu, D. Wang, Z. Tang, G. Lu, G. Sun, H.D. Yu, W. Huang, High-performance foam-shaped strain Sensor based on Carbon Nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano. 15(6), 9690 (2021). Doi:https://doi.org/10.1021/acsnano.1c00259

    Article  CAS  Google Scholar 

  55. Y. Chen, Y. Jiang, W. Feng, W. Wang, D. Yu, Construction of sensitive strain sensing nanofibrous membrane with polydopamine-modified MXene/CNT dual conductive network. Colloids Surfaces A: Physicochem. Eng. Aspects (2022). https://doi.org/10.1016/j.colsurfa.2021.128055

    Article  Google Scholar 

  56. Y. Cheng, Y. Lu, M. Xia, L. Piao, Q. Liu, M. Li, Y. Zhou, K. Jia, L. Yang, D. Wang, Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion. Compos. Sci. Technol. (2021). https://doi.org/10.1016/j.compscitech.2021.109023

    Article  Google Scholar 

  57. Z. Zhang, L. Weng, K. Guo, L. Guan, X. Wang, Z. Wu, Durable and highly sensitive flexible sensors for wearable electronic devices with PDMS-MXene/TPU composite films. Ceram. Int. 48(4), 4977 (2022). https://doi.org/10.1016/j.ceramint.2021.11.035

    Article  CAS  Google Scholar 

  58. X. Liu, X. Jin, L. Li, J. Wang, Y. Yang, Y. Cao, W. Wang, Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance. J. Mater. Chem. A 8(25), 12526 (2020). Doi:https://doi.org/10.1039/d0ta03048a

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Sichuan Science and Technology Program (2021YFG0249).

Author information

Authors and Affiliations

Authors

Contributions

CZ contributed to investigation and writing of the original draft. WC contributed to conceptualization, supervision, and writing, reviewing, & editing of the manuscript. XY contributed to validation. QZ contributed to investigation and validation. DC contributed to validation. YW contributed to validation and formal analysis. RH contributed to validation. MD contributed to validation. RG contributed to formal analysis. GC contributed to formal analysis. XD contributed to formal analysis. ZW contributed to formal analysis. XL contributed to investigation. CF contributed to conceptualization and supervision.

Corresponding author

Correspondence to Wenfeng Qin.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, W., Geng, J., Lin, C. et al. Flexible multifunctional TPU strain sensors with improved sensitivity and wide sensing range based on MXene/AgNWs. J Mater Sci: Mater Electron 34, 564 (2023). https://doi.org/10.1007/s10854-023-09950-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09950-2

Navigation