Skip to main content
Log in

An Ultrasensitive, Durable and Stretchable Strain Sensor with Crack-wrinkle Structure for Human Motion Monitoring

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Flexible strain sensor has promising features in successful application of health monitoring, electronic skins and smart robotics, etc. Here, we report an ultrasensitive strain sensor with a novel crack-wrinkle structure (CWS) based on graphite nanoplates (GNPs)/thermoplastic urethane (TPU)/polydimethylsiloxane (PDMS) nanocomposite. The CWS is constructed by pressing and dragging GNP layer on TPU substrate, followed by encapsulating with PDMS as a protective layer. On the basis of the area statistics, the ratio of the crack and wrinkle structures accounts for 31.8% and 9.5%, respectively. When the sensor is stretched, the cracks fracture, the wrinkles could reduce the unrecoverable destruction of cracks, resulting in an excellent recoverability and stability. Based on introduction of the designed CWS in the sensor, the hysteresis effect is limited effectively. The CWS sensor possesses a satisfactory sensitivity (GF = 750 under 24% strain), an ultralow detectable limit (strain = 0.1%) and a short respond time of 90 ms. For the sensing service behaviors, the CWS sensor exhibits an ultrahigh durability (high stability > 2×104 stretching-releasing cycles). The excellent practicality of CWS sensor is demonstrated through various human motion tests, including vigorous exercises of various joint bending, and subtle motions of phonation, facial movements and wrist pulse. The present CWS sensor shows great developing potential in the field of cost-effective, portable and high-performance electronic skins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, Y.; Zhu, J.; Yeom, B.; Di Prima, M.; Su, X. L.; Kim, J. G.; Yoo, S. J.; Uher, C.; Kotov, N. A. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 2013, 500, 59–63.

    CAS  PubMed  Google Scholar 

  2. Yue, X. Y.; Jia, Y. Y.; Wang, X. Z.; Zhou, K. K.; Zhai, W.; Zheng, G. Q.; Dai, K.; Mi, L. W.; Liu, C. T.; Shen, C. Y. Highly stretchable and durable fiber-shaped strain sensor with porous core-sheath structure for human motion monitoring. Compos. Sci. Technol. 2020, 189, 108038.

    CAS  Google Scholar 

  3. Zhai, W.; Xia, Q. J.; Zhou, K. K.; Yue, X. Y.; Ren, M. N.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Multifunctional flexible carbon black-polydimethylsiloxane piezoresistive sensor with ultrahigh linear range, excellent durability and oil-water separation capability. Chem. Eng. J. 2019, 372, 373–382.

    CAS  Google Scholar 

  4. Zhou, Y. J.; Zhan, P. F.; Ren, M. N.; Zheng, G. Q.; Dai, K.; Mi, L. W.; Liu, C. T.; Shen, C. Y. Significant stretchability enhancement of a crack-based strain sensor combined with high sensitivity and superior durability for motion monitoring. ACS Appl. Mater. Interfaces 2019, 11, 7405–7414.

    CAS  PubMed  Google Scholar 

  5. Wang, Y. L.; Hao, J.; Huang, Z. Q.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon, 2018, 126, 360–371.

    CAS  Google Scholar 

  6. Liu, M. M.; Pu, X.; Jiang, C. Y.; Liu, T.; Huang, X.; Chen, L. B.; Du, C. H.; Sun, J. M.; Hu, W. G.; Wang, Z. L. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 2017, 29, 1703700.

    Google Scholar 

  7. Ouyang, H.; Tian, J. J.; Sun, G. L.; Zou, Y.; Liu, Z.; Li, H.; Zhao, L. M.; Shi, B. J.; Fan, Y. B.; Fan, Y. F.; Wang, Z. L.; Li, Z. Self-powered pulse sensor for antidiastole of cardiovascular disease. Adv. Mater. 2017, 29, 1703456.

    Google Scholar 

  8. Sun, Q. J.; Zhao, X. H.; Zhou, Y.; Yeung, C. C.; Wu, W.; Venkatesh, S.; Xu, Z. X.; Wylie, J. J.; Li, W. J.; Roy, V. A. L. Fingertip-skin-inspired highly sensitive and multifunctional sensor with hierarchically structured conductive graphite/polydimethylsiloxane foams. Adv. Funct. Mater. 2019, 29, 1808829.

    Google Scholar 

  9. Shi, X. L.; Wang, H. K.; Xie, X. T.; Xue, Q. W.; Zhang, J. Y.; Kang, S. Q.; Wang, C. H.; Liang, J. J.; Chen, Y. S. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano 2019, 13, 649–659.

    CAS  PubMed  Google Scholar 

  10. Huang, T.; He, P.; Wang, R. R.; Yang, S. W.; Sun, J.; Xie, X. M.; Ding, G. Q. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors. Adv. Funct. Mater. 2019, 29, 1903732.

    CAS  Google Scholar 

  11. Wang, X. Z.; Sun, H. L.; Yue, X. Y.; Yu, Y. F.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. A highly stretchable carbon nanotubes/thermoplastic polyurethane fiber-shaped strain sensor with porous structure for human motion monitoring. Compos. Sci. Technol. 2018, 168, 126–132.

    CAS  Google Scholar 

  12. Li, X. M.; Yang, T. T.; Yang, Y.; Zhu, J.; Li, L.; Alam, F. E.; Li, X.; Wang, K. L.; Cheng, H. Y.; Lin, C. T.; Fang, Y.; Zhu, H. W. Large-area ultrathin graphene films by single-step marangoni self-assembly for highly sensitive strain sensing application. Adv. Funct. Mater. 2016, 26, 1322–1329.

    CAS  Google Scholar 

  13. Fan, Q. Q.; Qin, Z. Y.; Gao, S. L.; Wu, Y. T.; Pionteck, J.; Mader, E.; Zhu, M. F. The use of a carbon nanotube layer on a polyurethane multifilament substrate for monitoring strains as large as 400%. Carbon 2012, 50, 4085–4592.

    CAS  Google Scholar 

  14. Liu, Z. Y.; Qi, D. P.; Guo, P. Z.; Liu, Y.; Zhu, B. W.; Yang, H.; Liu, Y. Q.; Li, B.; Zhang, C. G.; Yu, J. C.; Liedberg, B.; Chen, X. D. Thickness-gradient films for high gauge factor stretchable strain sensors. Adv. Mater. 2015, 27, 6230–6237.

    CAS  PubMed  Google Scholar 

  15. Park, J.; Lee, Y.; Hong, J.; Lee, Y.; Ha, M.; Jung, Y.; Lim, H.; Kim, S. Y.; Ko, H. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano 2014, 8, 12020–12029.

    CAS  PubMed  Google Scholar 

  16. Ren, M. N.; Zhou, Y. J.; Wang, Y.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chem. Eng. J. 2019, 360, 762–777.

    CAS  Google Scholar 

  17. Wang, X. W.; Gu, Y.; Xiong, Z. P.; Cui, Z.; Zhang, T. Electronic skin: silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336–1342.

    CAS  PubMed  Google Scholar 

  18. Hu, C.; Li, Z. Y.; Wang, Y. L.; Gao, J. C.; Dai, K.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Song, H. X.; Guo, Z. H. Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: reduced graphene oxide or carbon nanotubes. J. Mater. Chem. C 2017, 5, 2318–2328.

    CAS  Google Scholar 

  19. Liu, H.; Dong, M. Y.; Huang, W. J.; Gao, J. C.; Dai, K.; Guo, J.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Guo, Z. H. Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J. Mater. Chem. C 2016, 5, 73–78.

    Google Scholar 

  20. Fu, X. W.; Liao, Z. M.; Zhou, J. X.; Zhou, Y. B.; Wu, H. C.; Zhang, R.; Jing, G. Y.; Xu, J.; Wu, X. S.; Guo, W. L.; Yu, D. P. Strain dependent resistance in chemical vapor deposition grown graphene. Appl Phys. Lett. 2011, 99, 213107.

    Google Scholar 

  21. Xiao, X.; Yuan, L. Y.; Zhong, J. W.; Ding, T. P.; Liu, Y.; Cai, Z. X.; Rong, Y. G.; Han, H. W.; Zhou, J.; Wang, Z. L. High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv. Mater. 2011, 23, 5440–5444.

    CAS  PubMed  Google Scholar 

  22. Cai, Y. C.; Shen, J.; Dai, Z. Y.; Zang, X. X.; Dong, Q. C.; Guan, G. F.; Li, L. J.; Huang, W.; Dong, X. C. Extraordinarily stretchable all-carbon collaborative nanoarchitectures for epidermal sensors. AVv. Mater. 2017, 29, 1606411.

    Google Scholar 

  23. Li, X. T.; Hu, H. B.; Hua, T.; Xu, B. G.; Jiang, S. X. Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Res. 2018, 11, 5799–5811.

    CAS  Google Scholar 

  24. Zhou, J.; Xu, X. Z.; Xin, Y. Y.; Lubineau, G. Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv. Funct. Mater. 2018, 28, 1705591.

    Google Scholar 

  25. Fratzl, P.; Barth, F. G. Biomaterial systems for mechanosensing and actuation. Nature 2009, 462, 442–448.

    CAS  PubMed  Google Scholar 

  26. Ho, M. D.; Ling, Y. Z.; Yap, L. W.; Wang, Y.; Dong, D. S.; Zhao, Y. M.; Cheng, W. L. Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable sensors for detecting emotional expression and apexcardiogram. Adv. Funct. Mater. 2017, 27, 1700845.

    Google Scholar 

  27. Souri, H.; Bhattacharyya, D. Highly stretchable multifunctional wearable devices based on conductive cotton and wool fabrics. ACS Appl. Mater. Interfaces 2018, 10, 20845–20853.

    CAS  PubMed  Google Scholar 

  28. Liu, P.; Pan, W. D.; Liu, Y.; Liu, J.; Xu, W. R.; Guo, X. H.; Liu, C. X.; Zhang, Y. G.; Ge, Y. J.; Huang, Y. Fully flexible strain sensor from core-spun elastic threads with integrated electrode and sensing cell based on conductive nanocomposite. Compos. Sci. Technol. 2018, 159, 42–49.

    CAS  Google Scholar 

  29. Qiao, Y. C.; Wang, Y. F.; Tian, H.; Li, M. R.; Jian, J. M.; Wei, Y. H.; Tian, Y.; Wang, D. Y.; Pang, Y.; Geng, X. S.; Wang, X. F.; Zhao, Y. F.; Wang, H. M.; Deng, N. Q.; Jian, M. Q.; Zhang, Y. Y.; Liang, R. R.; Yang, Y.; Ren, T. L. Multilayer graphene epidermal electronic skin. ACS Nano 2018, 12, 8839–8846.

    CAS  PubMed  Google Scholar 

  30. Oh, J.; Yang, J. C.; Kim, J. O.; Park, H.; Kwon, S. Y.; Lee, S.; Sim, J. Y.; Oh, H. W.; Kim, J.; Park, S. Pressure insensitive strain sensor with facile solution-based process for tactile sensing applications. ACS Nano 2018, 12, 7546–7553.

    CAS  PubMed  Google Scholar 

  31. Roda, N.; Naoji, M.; Zhi, J.; Md, N.; Goni, O.; Someya, T. A highly sensitive capacitive-type strain sensor using wrinkled ultrathin gold films. Nano Lett. 2018, 18, 5610–5617.

    Google Scholar 

  32. Sun, H.; Dai, K.; Zhai, W.; Zhou, Y.; Li, J.; Zheng, G.; Li, B.; Liu, C.; Shen, C. A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure. ACS Appl. Mater. Interfaces 2019, 11, 36052–36062.

    CAS  PubMed  Google Scholar 

  33. Zhou, C. G.; Sun, W. J.; Jia, L. C.; Xu, L.; Dai, K.; Yan, D. X.; Li, Z. M. Highly stretchable and sensitive strain sensor with porous segregated conductive network. ACS Appl. Mater. Interfaces 2019, 40, 37094–37102.

    Google Scholar 

  34. Kang, D.; Pikhitsa, P. V.; Choi, Y. W.; Lee, C.; Shin, S. S.; Piao, L. F.; Park, B.; Suh, K. Y.; Kim, T. I.; Choi, M. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 2014, 516, 222–226.

    CAS  PubMed  Google Scholar 

  35. Park, B.; Kim, J.; Kang, D.; Jeong, C.; Kim, K. S.; Kim, J. U.; Yoo, P. J.; Kim, T. I. Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: effect of crack depth. Adv. Mater. 2016, 28, 8130–8137.

    CAS  PubMed  Google Scholar 

  36. Xu, F.; Durham, J. W.; Wiley, B. J.; Zhu, Y. Strain-release assembly of nanowires on stretchable substrates. ACS Nano 2011, 5, 1556–1563.

    CAS  PubMed  Google Scholar 

  37. Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

    CAS  PubMed  Google Scholar 

  38. Xu, F.; Wang, X.; Zhu, Y. T.; Zhu, Y. Wavy ribbons of carbon nanotubes for stretchable conductors. Adv. Funct. Mater. 2012, 22, 1279–1283.

    CAS  Google Scholar 

  39. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    CAS  PubMed  Google Scholar 

  40. Simmons, J. G. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 1963, 34, 2581–2590.

    Google Scholar 

  41. Kang, I. P.; Schulz, M. J.; Kim, J. H.; Shanov, V.; Shi, D. L. A carbon nanotube strain sensor for structural health monitoring. Smart Mater. Struct. 2006, 15, 737–748.

    CAS  Google Scholar 

  42. Luo, S. D.; Liu, T. Structure property processing relationships of single-wall carbon nanotube thin film piezoresistive sensors. Carbon 2013, 59, 315–324.

    CAS  Google Scholar 

  43. Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 2014, 8, 5154–5163.

    CAS  PubMed  Google Scholar 

  44. Tang, Y. C.; Zhao, Z. B.; Hu, H.; Liu, Y.; Wang, X. Z.; Zhou, S. K.; Qiu, J. S. Highly stretchable and ultrasensitive strain sensor based on reduced graphene oxide microtubes-elastomer composite. ACS Appl. Mater. Interfaces 2015, 7, 27432–27439.

    CAS  PubMed  Google Scholar 

  45. Liao, X. Q.; Liao, Q. L.; Yan, X. Q.; Liang, Q. J.; Si, H. N.; Li, M. H.; Wu, H. L.; Cao, S. Y.; Zhang, Y. Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor. Adv. Funct. Mater. 2015, 25, 2395–2401.

    CAS  Google Scholar 

  46. Choong, C. L.; Shim, M. B.; Lee, B. S.; Jeon, S.; Ko, D. S.; Kang, T. H.; Bae, J.; Lee, S. H.; Byun, K. E.; Im, J.; Jeong, Y. J.; Park, C. E.; Park, J. J.; Chung, U. I. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 2014, 26, 3451–3458.

    CAS  PubMed  Google Scholar 

  47. Pan, F.; Chen, S. M.; Li, Y. H.; Tao, Z. C.; Ye, J. L.; Ni, K.; Yu, H.; Xiang, B.; Ren, Y. B.; Qin, F. X.; Yu, S. H.; Zhu, Y. W. 3D graphene films enable simultaneously high sensitivity and large stretchability for strain sensors. Adv. Funct. Mater. 2018, 28, 1803221.

    Google Scholar 

  48. Cheng, Y.; Wang, R. R.; Sun, J.; Gao, L. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 2015, 27, 7365–7371.

    CAS  PubMed  Google Scholar 

  49. Yu, Y. F.; Zhai, Y.; Yun, Z. G.; Zhai, W.; Wang, X. Z.; Zheng, G. Q.; Yan, C.; Dai, K.; Liu, C. T.; Shen, C. Y. Ultra-stretchable porous fiber-shaped strain sensor with exponential response in full sensing range and excellent anti-interference ability toward buckling, torsion, temperature, and humidity. Adv. Electron. Mater. 2019, 5, 1900538.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51773183 and U1804133), National Natural Science Foundation of China-Henan Province Joint Funds (No. U1604253), Henan Province University Innovation Talents Support Program (No. 20HASTIT001), and Innovation Team of Colleges and Universities in Henan Province (No. 20IRTSTHN002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Dai or Chun-Tai Liu.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZY., Zhai, W., Yu, YF. et al. An Ultrasensitive, Durable and Stretchable Strain Sensor with Crack-wrinkle Structure for Human Motion Monitoring. Chin J Polym Sci 39, 316–326 (2021). https://doi.org/10.1007/s10118-021-2500-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2500-8

Keywords

Navigation