Skip to main content
Log in

Effect of the Al2O3 interfacial layer thickness on the measurement temperature-induced I–V characteristics in Au/Ti/Al2O3/n-GaAs structures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We prepared the Au/Ti/Al2O3/n-GaAs MIS (metal/insulating/semiconductor) structures with and without Al2O3 interfacial layer. The diode D1 has the interfacial layer thickness of 3 nm, and the diode D2 5 nm and diode D3 10 nm. We studied to obtain the high- or low-barrier-height devices depending on interfacial layer thickness for the availability of different opto-electronic circuit elements. We reported a zero-bias barrier height Φb0  value of 0.77 eV for the as-deposited Au/Ti/n-type GaAs diode from the 300 K I–V measurements. We obtained the Φb0 values of 0.73, 0.94, and 1.11 eV for the D1, D2, and D3 MIS diodes at 300 K, respectively. The temperature-induced current–voltage measurements for the diodes were made in the temperature range of 50–320 K. The Φb0 value for the as-deposited and D1 diodes raised very slightly from 320 K down to 120 K, but it decreased sharply from 120 to 50 K. The temperature-induced current–voltage measurements for the diodes were made in the temperature range of 50–320 K. The Φb0 value for the D2 and D3 diodes decreased slightly from 320 K down to 120 K, but it decreased sharply from 120 to 50 K. The apparent low barrier height (BH) with decreasing temperature can be attributed to the fact that the current preferentially flows through the low BH with the temperature due to the BH inhomogeneity. The Rs values for the as-deposited, D1, D2, and D3 MIS structures were determined as 130 Ω, 5.80 Ω, 101 Ω, and 216 Ω from the forward bias I–V curves at 300 K, respectively. The fact that the D1 and D2 samples have lower Rs values than that of the as-deposited sample may be attributed to the fact that the Al2O3 thin film improves the inhomogeneity of the Schottky interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Clarendon Press, Oxford, 1988), p. 124

    Google Scholar 

  2. W. Mönch, On the band-structure lineup at Schottky contacts and semiconductor heterostructures. Mater. Sci. Semicond. Process. 28, 2–12 (2014). https://doi.org/10.1016/j.mssp.2014.03.024

    Article  CAS  Google Scholar 

  3. M.S. Gorji, K.Y. Cheong, Embedded nanoparticles in schottky and ohmic contacts: A review. Crit. Rev. Solid State Mater. Sci. 40, 197–222 (2015). https://doi.org/10.1080/10408436.2014.940444

    Article  CAS  Google Scholar 

  4. ÇŞ Güçlü, A.F. Özdemir, A. Karabulut, A. Kökce, Ş Altındal, Investigation of temperature dependent negative capacitance in the forward bias C-V characteristics of (Au/Ti)/Al2O3/n-GaAs Schottky barrier diodes (SBDs). Mater. Sci. Semicond. Process. 89, 26–31 (2019). https://doi.org/10.1016/j.mssp.2018.08.019

    Article  CAS  Google Scholar 

  5. W. Filali, N. Sengouga, S. Oussalah, R.H. Mari, D. Jameel, N.A. Al Saqri, M. Aziz, D. Taylor, M. Henini, Characterisation of temperature dependent parameters of multi-quantum well (MQW) Ti/Au/n-AlGaAs/n-GaAs/n-AlGaAs Schottky diodes. Superlattices Microstruct. 111, 1010–1021 (2017)

    Article  CAS  Google Scholar 

  6. M. Sharma, S.K. Tripathi, Frequency and voltage dependence of admittance characteristics of Al/Al2O3/PVA:n-ZnSe Schottky barrier diodes. Mater. Sci. Semicond. Process. 41, 155–161 (2016). https://doi.org/10.1016/j.mssp.2015.07.028

    Article  CAS  Google Scholar 

  7. A. Türüt, On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. Turk. J. Phys. 44, 302–347 (2020)

    Article  Google Scholar 

  8. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986). https://doi.org/10.1063/1.97359

    Article  CAS  Google Scholar 

  9. J. Jang, J. Song, S.S. Lee, S. Jeong, B.J. Lee, S. Kim, Analysis of temperature-dependent I-V characteristics of the Au/n-GaSb Schottky diode. Mater. Sci. Semicond. Process. 131, 105882 (2021). https://doi.org/10.1016/j.mssp.2021.105882

    Article  CAS  Google Scholar 

  10. A.F. Özdemir, T. Göksu, N. Yıldırım, A. Turut, Effects of measurement temperature and metal thickness on Schottky diode characteristics. Phys. B: Condens. Matter 616, 413125 (2021)

    Article  Google Scholar 

  11. S. Soltani, P.M. Gammon, A. Pérez-Tomas, A. Ferhat Hamida, Y. Terchi, Gaussian distribution of inhomogeneous nickel-vanadium Schottky interface on silicon (100). Semicond. Sci. Technol. 36(1), 015020 (2020)

    Article  Google Scholar 

  12. N.P. Maity, R.R. Thakur, R. Maity, R.K. Thapa, S. Baishya, Interface charge density measurement for ultra thin ZrO2 material based MOS devices using conductance method. Procedia Comput. Sci. 57, 761–765 (2015)

    Article  Google Scholar 

  13. A. Tataroğlu, A.G. Al-Sehemi, M. Özdemir, R. Özdemir, H. Usta, A.A. Al-Ghamdi, W.A. Farooq, F. Yakuphanoglu, Frequency and electric field controllable photodevice: FYTRONIX device. Phys. B Condens. Matter. 519, 53–58 (2017). https://doi.org/10.1016/j.physb.2017.05.046

    Article  CAS  Google Scholar 

  14. S. Hlali, A. Farji, N. Hizem, L. Militaru, A. Kalboussi, A. Souifi, High temperature and voltage dependent electrical and dielectric properties of TiN/Al2O3/p-Si MIS structure. J. Alloys Compd. 713, 194–203 (2017). https://doi.org/10.1016/j.jallcom.2017.04.165

    Article  CAS  Google Scholar 

  15. H. Tecimer, S.O. Tan, S. Altindal, Frequency-dependent admittance analysis of the metal-semiconductor structure with an interlayer of Zn-doped organic polymer nanocomposites. IEEE Trans. Electron Devices 65, 231–236 (2018). https://doi.org/10.1109/TED.2017.2778023

    Article  CAS  Google Scholar 

  16. E.E. Tanrıkulu, S. Demirezen, I. Altındal, Uslu, On the anomalous peak and negative capacitance in the capacitance–voltage (C–V) plots of Al/(%7 Zn-PVA)/p-Si (MPS) structure. J. Mater. Sci. Mater. Electron 29, 2890–2898 (2018)

    Article  Google Scholar 

  17. N.P. Maity, A. Kumar, R. Maity, S. Baishya, Analysis of flatband voltage for MOS devices using high-K dielectric materials. Procedia Mater. Sci. 5, 1198–1204 (2014). https://doi.org/10.1016/j.mspro.2014.07.421

    Article  CAS  Google Scholar 

  18. H. Xiao, S. Huang, Frequency and voltage dependency of interface states and series resistance in Al/SiO2/p-Si MOS structure. Mater. Sci. Semicond. Process. 13, 395–399 (2010). https://doi.org/10.1016/j.mssp.2011.05.009

    Article  CAS  Google Scholar 

  19. O. Polat, M. Coskun, H. Efeoglu, M. Caglar, F.M. Coskun, Y. Caglar, A. Turut, The temperature induced current transport characteristics in the orthoferrite YbFeO3–δ thin film/p-type Si structure. J. Phys. Condens. Matter 33, 35704 (2021). https://doi.org/10.1088/1361-648X/abba69

    Article  CAS  Google Scholar 

  20. S.S. Jiang, G. He, Z.B. Fang, P.H. Wang, Y.M. Liu, J.G. Lv, M. Liu, Analysis of the electrical properties and current transportation mechanism of a metal oxide semiconductor (MOS) capacitor based on HfGdO gate dielectrics. J. Alloys Compd. 757, 288–297 (2018). https://doi.org/10.1016/j.jallcom.2018.05.091

    Article  CAS  Google Scholar 

  21. A. Karabulut, İ Orak, A. Türüt, The photovoltaic impact of atomic layer deposited TiO2 interfacial layer on Si-based photodiodes. Solid State Electron. 144, 39–48 (2018). https://doi.org/10.1016/j.sse.2018.02.016

    Article  CAS  Google Scholar 

  22. D. Shi, Y. Wang, X. Wu, Z. yang Yang, X. ji Li, J. qun Yang, F. Cao, Improving the barrier inhomogeneity of 4H-SiC Schottky diodes by inserting Al2O3 interface layer. Solid State Electron. 180, 107992 (2021). https://doi.org/10.1016/j.sse.2021.107992

    Article  CAS  Google Scholar 

  23. D. Shahrjerdi, E. Tutuc, S.K. Banerjee, Impact of surface chemical treatment on capacitance-voltage characteristics of GaAs metal-oxide-semiconductor capacitors with Al2O3 gate dielectric. Appl. Phys. Lett. 91, 2–5 (2007). https://doi.org/10.1063/1.2764438

    Article  CAS  Google Scholar 

  24. A. Fritah, L. Dehimi, F. Pezzimenti, A. Saadoune, B. Abay, Analysis of I–V–T characteristics of Au/n-InP schottky barrier diodes with modeling of nanometer-sized patches at low temperature. J. Electron. Mater. 48, 3692–3698 (2019). https://doi.org/10.1007/s11664-019-07129-2

    Article  CAS  Google Scholar 

  25. V. Janardhanam, I. Jyothi, K.S. Ahn, C.J. Choi, Temperature-dependent current–voltage characteristics of Se Schottky contact to n-type Ge. Thin Solid Films 546, 63–68 (2013). https://doi.org/10.1016/j.tsf.2013.04.074

    Article  CAS  Google Scholar 

  26. W.P. Leroy, K. Opsomer, S. Forment, R.L. Van Meirhaeghe, The barrier height inhomogeneity in identically prepared Au/n-GaAs Schottky barrier diodes. Solid State Electron. 49, 878–883 (2005). https://doi.org/10.1016/j.sse.2005.03.005

    Article  CAS  Google Scholar 

  27. S.J. Eglash, N. Newman, S. Pan, D. Mo, K. Shenai, W.E. Spicer, F.A. Ponce, D.M. Collins, Engineered Schottky barrier diodes for the modification and control of Schottky barrier heights. J. Appl. Phys. 61, 5159–5169 (1987). https://doi.org/10.1063/1.338290

    Article  CAS  Google Scholar 

  28. A. Akkaya, B. Boyarbay, H. Çetin, K. Yıldızlı, E. Ayyıldız, A Study on the electronic properties of SiOx Ny/p-Si interface. Silicon. 10, 2717–2725 (2018). https://doi.org/10.1007/s12633-018-9811-6

    Article  CAS  Google Scholar 

  29. A. Karabulut, H. Efeoglu, A. Turut, Influence of Al2O3 barrier on the interfacial electronic structure of Au/Ti/n-GaAs structures. J. Semicond. 38, 054003 (2017). https://doi.org/10.1088/1674-4926/38/5/054003

    Article  CAS  Google Scholar 

  30. P.D. Ye, B. Yang, K.K. Ng, J. Bude, G.D. Wilk, S. Halder, J.C.M. Hwang, GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric. Appl. Phys. Lett. 86, 1–3 (2005). https://doi.org/10.1063/1.1861122

    Article  CAS  Google Scholar 

  31. R.D. Long, A. Hazeghi, M. Gunji, Y. Nishi, P.C. McIntyre, Temperature-dependent capacitance-voltage analysis of defects in Al2O3 gate dielectric stacks on GaN. Appl. Phys. Lett. 101, 1–6 (2012). https://doi.org/10.1063/1.4769827

    Article  CAS  Google Scholar 

  32. D.A. Aldemir, A. Kökce, A.F. Özdemir, Temperature effects on the electrical characteristics of Al/PTh-SiO2/p-Si structure. Bull. Mater. Sci. 40, 1435–1439 (2017). https://doi.org/10.1007/s12034-017-1509-7

    Article  CAS  Google Scholar 

  33. G. Turgut, S. Duman, Sol–gel growth and characterization of a new p-NiO/n-GaAs structure. J. Alloys Compd. 664, 547–552 (2016). https://doi.org/10.1016/j.jallcom.2016.01.026

    Article  CAS  Google Scholar 

  34. Y. Liu, S. Shen, L.J. Brillson, R.G. Gordon, Impact of ultrathin Al2O3 barrier layer on electrical properties of LaLuO3 metal-oxide-semiconductor devices. Appl. Phys. Lett. 98, 3–5 (2011). https://doi.org/10.1063/1.3563713

    Article  CAS  Google Scholar 

  35. M. Çakar, Y. Onganer, A. Türüt, The nonpolymeric organic compound (pyronine-B)/p-type silicon/Sn contact barrier devices. Synth. Met. 126, 213–218 (2002)

    Article  Google Scholar 

  36. P. Kordoš, J. Škriniarová, A. Chvála, M. Florovič, J. Kováč, D. Donoval, Electrical and optical characterization of Ni/Al0.3Ga0.7 N/GaN schottky barrier diodes. J. Electron. Mater. 41, 3017–3020 (2012). https://doi.org/10.1007/s11664-012-2184-5

    Article  Google Scholar 

  37. A. Karabulut, Barrier height modification in Au/Ti/n-GaAs devices with a HfO2 interfacial layer formed by atomic layer deposition. Bull. Mater. Sci. 42, 1–11 (2019). https://doi.org/10.1007/s12034-018-1696-x

    Article  CAS  Google Scholar 

  38. A. Kocyigit, Y. Murat, A. Sar, F. Ozel, The Au/Cu2WSe4/p-Si photodiode: electrical and morphological characterization. J. Alloys Comp. 780, 186–192 (2019)

    Article  CAS  Google Scholar 

  39. A. Turut, A. Karabulut, K. Ejderha, N. Biyikli, Capacitance-conductance-current-voltage characteristics of atomic layer deposited Au/Ti/Al2O3/n-GaAs MIS structures. Mater. Sci. Semicond. Process. 39, 400–407 (2015). https://doi.org/10.1016/j.mssp.2015.05.025

    Article  CAS  Google Scholar 

  40. A.F. Güçlü, A.F. Özdemir, D.A. Aldemir, Ş Altındal, The reverse bias current–voltage–temperature (I–V–T) characteristics of the (Au/Ti)/Al2O3/n-GaAs Schottky barrier diodes (SBDs) in temperature range of 80–380 K. J. Mater. Sci. Mater. Electron. 32, 5624–5634 (2021). https://doi.org/10.1007/s10854-021-05284-z

    Article  CAS  Google Scholar 

  41. Y. Zhao, C. Wang, X. Zheng, X. Ma, Y. He, K. Liu, A. Li, Y. Peng, C. Zhang, Y. Hao, Effects of recess depths on performance of AlGaN/GaN power MIS-HEMTs on the Si substrates and threshold voltage model of different recess depths for the using HfO2 gate insulator. Solid State Electron. 163, 107649 (2020). https://doi.org/10.1016/j.sse.2019.107649

    Article  CAS  Google Scholar 

  42. A.S. Reddy, S. Uthanna, P.S. Reddy, Properties of dc magnetron sputtered Cu2O films prepared at different sputtering pressures. Appl. Surf. Sci. 253(12), 5287–5292 (2007). https://doi.org/10.1016/j.apsusc.2006.11.051

    Article  CAS  Google Scholar 

  43. K. Ejderha, A. Karabulut, N. Turkan, A. Turut, The characteristic parameters of Ni/n-6H-SiC devices over a wide measurement temperature range. Silicon 9(3), 395–401 (2017). https://doi.org/10.1007/s12633-016-9426-8

    Article  CAS  Google Scholar 

  44. N. Aghilizadeh, A.H. Sari, D. Dorranian, Role of Ar/O2 mixture on structural, compositional and optical properties of thin copper oxide films deposited by DC magnetron sputtering. J. Theor. Appl. Phys. 11(4), 285–290 (2017). https://doi.org/10.1007/s40094-017-0268-6

    Article  Google Scholar 

  45. A.S. Reddy, H.H. Park, V.S. Reddy, K.V.S. Reddy, N.S. Sarma, S. Kaleemulla, S. Uthanna, P.S. Reddy, Effect of sputtering power on the physical properties of dc magnetron sputtered copper oxide thin films. Mater. Chem. Phys. 110(2–3), 397–401 (2008). https://doi.org/10.1016/j.matchemphys.2008.02.031

    Article  CAS  Google Scholar 

  46. T. Göksu, N. Yildirim, H. Korkut, A.F. Özdemir, A. Turut, A. Köke, Barrier height temperature coefficient in ideal Ti/n-GaAs Schottky contacts. Microelectron. Eng. 87(9), 1781–1787 (2010)

    Article  Google Scholar 

  47. Y.C. Chang, M.L. Huang, K.Y. Lee, Y.J. Lee, T.D. Lin, M. Hong, J. Kwo, T.S. Lay, C.C. Liao, K.Y. Cheng, Atomic-layer-deposited HfO2 on In0.53Ga0.47As: passivation and energy-band parameters. Appl. Phys. Lett. 92, 2008–2010 (2008). https://doi.org/10.1063/1.2883967

    Article  CAS  Google Scholar 

  48. A. Karabulut, A. Türüt, S. Karataş, The electrical and dielectric properties of the Au/Ti/HfO2/n-GaAs structures. J. Mol. Struct. 1157, 513–518 (2018)

    Article  CAS  Google Scholar 

  49. T. Hashizume, K. Nishiguchi, S. Kaneki, J. Kuzmik, Z. Yatabe, State of the art on gate insulation and surface passivation for GaN-based power HEMTs. Mater. Sci. Semicond. Process. 78, 85–95 (2018). https://doi.org/10.1016/j.mssp.2017.09.028

    Article  CAS  Google Scholar 

  50. I.K. Er, A.O. Çağırtekin, M. Artuç, S. Acar, Synthesis of Al/HfO2/p-Si Schottky diodes and the investigation of their electrical and dielectric properties. J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-020-04937-9

    Article  Google Scholar 

  51. G. Cebisli, S. Asubay, Y.S. Ocak, Reactively sputtered MoO3 thin films and temperature dependence of electrical properties of an Ag/MoO3/n-Si Diode. J. Ovonic Res. 14, 405–414 (2018)

    CAS  Google Scholar 

  52. O. Kahveci, A. Akkaya, E. Ayyildiz, A. Türüt, Comparison of the Ti/n-GaAs Schottky contacts’ parameters fabricated using DC magnetron sputtering and thermal evaporation. Surf. Rev. Lett. 24, 1750047 (2017)

    Article  CAS  Google Scholar 

  53. Y. Li, W. Long, R.T. Tung, Inhomogeneous ohmic contacts: barrier height and contact area determination. Appl. Phys. Lett. 101, 1–6 (2012). https://doi.org/10.1063/1.4742142

    Article  CAS  Google Scholar 

  54. M. Gülnahar, T. Karacali, H. Efeoglu, Porous Si based Al schottky structures on p+-Si: a possible way for nano schottky fabrication. Electrochim. Acta 168, 41–49 (2015). https://doi.org/10.1016/j.electacta.2015.03.204

    Article  CAS  Google Scholar 

  55. Y. Li, Y. Li, J. Zhang, X. Zou, Y. Wang, Analysis on the temperature dependent electrical properties of graphene/Al–ZnO Schottky contact. Curr. Appl. Phys. 19, 1063–1067 (2019). https://doi.org/10.1016/j.cap.2019.06.007

    Article  Google Scholar 

  56. F. Roccaforte, F. Giannazzo, A. Alberti, M. Spera, M. Cannas, I. Cora, B. Pécz, F. Iucolano, G. Greco, Barrier inhomogeneity in vertical Schottky diodes on free standing gallium nitride. Mater. Sci. Semicond. Process. 94, 164–170 (2019). https://doi.org/10.1016/j.mssp.2019.01.036

    Article  CAS  Google Scholar 

  57. V.E. Gora, F.D. Auret, H.T. Danga, S.M. Tunhuma, C. Nyamhere, E. Igumbor, A. Chawanda, Barrier height inhomogeneities on Pd/n-4H-SiC Schottky diodes in a wide temperature range. Mater. Sci. Eng. B 247, 1–5 (2019). https://doi.org/10.1016/j.mseb.2019.06.001

    Article  CAS  Google Scholar 

  58. A. Kumar, A. Kumar, K.K. Sharma, S. Chand, Analysis of anomalous transport mechanism across the interface of Ag/p-Si Schottky diode in wide temperature range. Superlattices Microstruct. 128, 373–381 (2019). https://doi.org/10.1016/j.spmi.2019.02.014

    Article  CAS  Google Scholar 

  59. M. Garg, A. Kumar, H. Sun, C.H. Liao, X. Li, R. Singh, Temperature dependent electrical studies on Cu/AlGaN/GaN Schottky barrier diodes with its microstructural characterization. J. Alloys Compd. 806, 852–857 (2019). https://doi.org/10.1016/j.jallcom.2019.07.234

    Article  CAS  Google Scholar 

  60. Y. Shen, Q. Feng, K. Zhang, Z. Hu, G. Yan, G. Cai, W. Mu, Z. Jia, C. Zhang, H. Zhou, J. Zhang, X. Lian, Z. Lai, Y. Hao, The investigation of temperature dependent electrical characteristics of Au/Ni/β-(InGa)2O3 Schottky diode. Superlattices Microstruct. 133, 106179 (2019)

    Article  CAS  Google Scholar 

  61. B. Sürücü, H.H. Güllü, M. Terlemezoglu, D.E. Yildiz, M. Parlak, Determination of current transport characteristics in Au-Cu/CuO/n-Si Schottky diodes. Phys. B Condens. Matter. 570, 246–253 (2019). https://doi.org/10.1016/j.physb.2019.06.024

    Article  CAS  Google Scholar 

  62. M.B. Ullah, K. Ding, T. Nakagawara, V. Avrutin, Ü. Özgür, H. Morkoç, Characterization of Ag Schottky barriers on Be0.02Mg0.26ZnO/ZnO heterostructures. Phys. Status Solidi—Rapid Res. Lett. 12, 2–7 (2018). https://doi.org/10.1002/pssr.201700366

    Article  CAS  Google Scholar 

  63. M.S.P. Reddy, H. Park, V.R. Reddy, Metal/Interlayer. n-GaN, M.I.S. Semiconductor, Junction, Effect of temperature on the electrical and current transport properties of Au/Nd2O3. Appl. Phys. A: Mater. Sci. Process. 127, 1–8 (2021). https://doi.org/10.1007/s00339-021-04302-5

    Article  CAS  Google Scholar 

  64. S. Saadaoui, O. Fathallah, H. Maaref, Effects of current transportation and deep traps on leakage current and capacitance hysteresis of AlGaN/GaN HEMT. Mater. Sci. Semicond. Process. 115, 105100 (2020). https://doi.org/10.1016/j.mssp.2020.105100

    Article  CAS  Google Scholar 

  65. J. Osvald, Z.J. Horváth, Theoretical study of the temperature dependence of electrical characteristics of Schottky diodes with an inverse near-surface layer. Appl. Surf. Sci. 234, 349–354 (2004). https://doi.org/10.1016/j.apsusc.2004.05.046

    Article  CAS  Google Scholar 

  66. Z. Tekeli, Ş Altndal, M. Çakmak, S. Özçelik, D. Çalişkan, E. Özbay, The behavior of the I–V–T characteristics of inhomogeneous (NiAu)-Al0.3Ga0.7 N-AlNGaN heterostructures at high temperatures. J. Appl. Phys. 102, 054510 (2007). https://doi.org/10.1063/1.2777881

    Article  CAS  Google Scholar 

  67. D.E. Yildiz, S. Altindal, H. Kanbur, Gaussian distribution of inhomogeneous barrier height in Al/SiO2/p-Si Schottky diodes. J. Appl. Phys. 103, 124502 (2008)

    Article  Google Scholar 

  68. ÇŞ Güçlü, A.F. Özdemir, Ş Altindal, Double exponential I–V characteristics and double Gaussian distribution of barrier heights in (Au/Ti)/Al2O3/n-GaAs (MIS)-type Schottky barrier diodes in wide temperature range. Appl. Phys. A 122, 1032 (2016). https://doi.org/10.1007/s00339-016-0558-x

    Article  CAS  Google Scholar 

  69. S. Chand, S. Bala, Analysis of current-voltage characteristics of inhomogeneous Schottky diodes at low temperatures. Appl. Surf. Sci. 252, 358–363 (2005). https://doi.org/10.1016/j.apsusc.2005.01.009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulkerim Karabulut.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turut, A., Karabulut, A. & Efeoǧlu, H. Effect of the Al2O3 interfacial layer thickness on the measurement temperature-induced I–V characteristics in Au/Ti/Al2O3/n-GaAs structures. J Mater Sci: Mater Electron 32, 22680–22688 (2021). https://doi.org/10.1007/s10854-021-06753-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06753-1

Navigation