Skip to main content

Advertisement

Log in

Advanced cisplatin nanoformulations as targeted drug delivery platforms for lung carcinoma treatment: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lung cancer accounts for the second-highest death rate globally among cancer-associated mortality. Cisplatin is a first-line chemotherapy medication used for the treatment of lung cancer. The most challenging problems in treating lung cancer with this drug include the development of drug resistance by the cells, low water solubility, and adverse effects on the normal cells. To address these concerns, nanotechnology-based drug delivery approach has shown promising results, resulting in an increase in the cellular absorption of drugs by the cancer cells with minimal adverse effects. According to the findings, cisplatin formulations including polymeric nanoparticles, micelles, dendrimers, and liposomes have a greater chance of delivering persistent cisplatin to the tumor in response to changes in the tumor microenvironment. This review deals with the various in vitro and in vivo studies of cisplatin nanoformulations and also covers the clinical trials carried out using nanocarrier-based cisplatin delivery. According to the best of our knowledge, this is the first detailed review article containing collective studies of cisplatin nanoformulations for lung cancer treatment.

Graphical abstract

Schematic representation indicating the efficacy of different cisplatin-loaded nanocarriers for targeted drug delivery in lung carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  Google Scholar 

  2. https://www.cancer.net/about-us/cancernet-editorial-board

  3. Stein JJ (1996) An evaluation of treatment methods for lung carcinoma. Am J Roentgenol 96:119–129. https://doi.org/10.2214/ajr.96.1.119

    Article  Google Scholar 

  4. Anagnostou VK, Brahmer JR (2015) Cancer immunotherapy: a future paradigm shift in the treatment of non–small cell lung cancer. Clin Cancer Res 21:976–984. https://doi.org/10.1158/1078-0432

    Article  CAS  Google Scholar 

  5. Cox G, Jones JL, Walker RA, Steward WP, O’Byrne KJ (2000) Angiogenesis and non-small cell lung cancer. Lung Cancer 27:81–100. https://doi.org/10.1016/S0169-5002(99)00096-3

    Article  CAS  Google Scholar 

  6. Cryer AM, Thorley AJ (2019) Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacol Ther 198:189–205. https://doi.org/10.1016/j.pharmthera.2019.02.010

    Article  CAS  Google Scholar 

  7. Shiono S, Katahira M, Abiko M, Sato T (2015) Smoking is a perioperative risk factor and prognostic factor for lung cancer surgery. J Thorac Cardiovasc Surg 63:93–98. https://doi.org/10.1007/s11748-014-0461-3

    Article  Google Scholar 

  8. Ihde DC (1992) Chemotherapy of lung cancer. N Engl J Med 327:1434–1441. https://doi.org/10.1056/NEJM199211123272006

    Article  CAS  Google Scholar 

  9. Hanania AN, Mainwaring W, Ghebre YT, Hanania NA, Ludwig M (2019) Radiation-induced lung injury: assessment and management. Chest 156:150–162. https://doi.org/10.1016/j.chest.2019.03.033

    Article  Google Scholar 

  10. Ming X, Feng Y, Yang C, Wang W, Wang P, Deng J (2016) Radiation-induced heart disease in lung cancer radiotherapy: a dosimetric update. Medicine 95:41–46. https://doi.org/10.1097/MD.0000000000005051

    Article  CAS  Google Scholar 

  11. Assoun S, Brosseau S, Steinmetz C, Gounant V, Zalcman G (2017) Bevacizumab in advanced lung cancer: state of the art. Future Oncol 13:2515–2535. https://doi.org/10.2217/fon-2017-0302

    Article  CAS  Google Scholar 

  12. Shih T, Lindley C (2006) Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther 28:1779–1802. https://doi.org/10.1016/j.clinthera.2006.11.015

    Article  CAS  Google Scholar 

  13. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320. https://doi.org/10.1038/nrd1691

    Article  CAS  Google Scholar 

  14. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin—DNA adducts. Chem Rev 99:2467–2498. https://doi.org/10.1021/cr980421n

    Article  CAS  Google Scholar 

  15. Gispen WH, Hamers FP, Neijt JP (1990) Neurotoxic side-effects of cisplatin. Eur J Cancer 27:372–376

    Google Scholar 

  16. Duan Z, Cai G, Li J, Chen X (2020) Cisplatin-induced renal toxicity in elderly people. Ther Adv Med Oncol 12:1–15. https://doi.org/10.1177/1758835920923430

    Article  Google Scholar 

  17. Shahid F, Farooqui Z, Khan F (2018) Cisplatin-induced gastrointestinal toxicity: an update on possible mechanisms and on available gastroprotective strategies. Eur J Pharmacol 827:49–57. https://doi.org/10.1016/j.ejphar.2018.03.009

    Article  CAS  Google Scholar 

  18. Yue Z, Cao Z (2016) Current strategy for cisplatin delivery. Curr Cancer Drug Targets 16:480–488

    Article  CAS  Google Scholar 

  19. Ciuleanu T, Brodowicz T, Zielinski C, Kim JH, Krzakowski M, Laack E, Wu YL, Bover I, Begbie S, Tzekova V, Cucevic B (2009) Maintenance pemetrexed plus best supportive care versus placebo plus best supportive care for non-small-cell lung cancer: a randomised, double-blind, phase 3 study. The Lancet 374:1432–1440. https://doi.org/10.1016/S0140-6736(09)61497-5

    Article  CAS  Google Scholar 

  20. Farrell D, Ptak K, Panaro NJ, Grodzinski P (2011) Nanotechnology-based cancer therapeutics—promise and challenge—lessons learned through the NCI alliance for nanotechnology in cancer. Pharm Res 28:273–278. https://doi.org/10.1007/s11095-010-0214-7

    Article  CAS  Google Scholar 

  21. Sutradhar KB, Amin M (2014) Nanotechnology in cancer drug delivery and selective targeting. Int Sch Res Notices 2014:1–12. https://doi.org/10.1155/2014/939378

    Article  CAS  Google Scholar 

  22. Kesharwani P (2019) Nanotechnology-based targeted drug delivery systems for lung cancer. Academic Press

    Google Scholar 

  23. Prasad R, Pandey R, Varma R, Barman I (2016) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. Oxfordshire, pp 53–70

  24. Agarwal A, Asthana A, Gupta U, Jain NK (2008) Tumor and dendrimers: a review on drug delivery aspects. J Pharm Pharmacol 60:671–688. https://doi.org/10.1211/jpp.60.6.0001

    Article  CAS  Google Scholar 

  25. Maya S, Sarmento B, Nair A, Rejinold NS, Nair SV, Jayakumar R (2013) Smart stimuli sensitive nanogels in cancer drug delivery and imaging: a review. Curr Pharm Des 19:7203–7218. https://doi.org/10.2174/138161281941131219124142

    Article  CAS  Google Scholar 

  26. Pillai G (2019) Nanotechnology toward treating cancer: a comprehensive review. Appl Targeted Nano Drugs Deliv Syst 2019:221–256. https://doi.org/10.1016/B978-0-12-814029-1.00009-0

    Article  Google Scholar 

  27. Aldossary SA (2019) Review on pharmacology of cisplatin: clinical use, toxicity and mechanism of resistance of cisplatin. Pharmacol J 12:15–16. https://doi.org/10.13005/bpj/1608

    Article  CAS  Google Scholar 

  28. Na JH, Lee S, Koo H, Han H, Lee KE, Han SJ, Choi SH, Kim H, Lee S, Kwon IC, Choi K (2016) T1-weighted mr imaging of liver tumor by gadolinium-encapsulated glycol chitosan nanoparticles without non-specific toxicity in normal tissues. Nanoscale 8:9736–9745. https://doi.org/10.1039/C5NR06673E

    Article  CAS  Google Scholar 

  29. Ghaferi M, Amari S, Vivek Mohrir B, Raza A, Ebrahimi Shahmabadi H, Alavi SE (2020) Preparation, characterization, and evaluation of cisplatin-loaded polybutylcyanoacrylate nanoparticles with improved in vitro and in vivo anticancer activities. Pharmaceuticals 13:44. https://doi.org/10.3390/ph13030044

    Article  CAS  Google Scholar 

  30. Wu H, Jin H, Wang C, Zhang Z, Ruan H, Sun L, Yang C, Li Y, Qin W, Wang C (2017) Synergistic cisplatin/doxorubicin combination chemotherapy for multidrug-resistant cancer via polymeric nanogels targeting delivery. ACS Appl Mater 9:9426–9436. https://doi.org/10.1021/acsami.6b16844

    Article  CAS  Google Scholar 

  31. Koganti S, Jagani HV, Palanimuthu VR, Mathew JA, Rao MC, Rao JV (2013) In vitro and in vivo evaluation of the efficacy of nanoformulation of siRNA as an adjuvant to improve the anticancer potential of cisplatin. Exp Mol Pathol 94:137–147. https://doi.org/10.1016/j.yexmp.2012.10.007

    Article  CAS  Google Scholar 

  32. Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP (2017) Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv 24:539–557. https://doi.org/10.1080/10717544.2016.1276232

    Article  CAS  Google Scholar 

  33. Gil MS, Thambi T, Phan VG, Kim SH, Lee DS (2017) Injectable hydrogel-incorporated cancer cell-specific cisplatin releasing nanogels for targeted drug delivery. J Mater Chem B 5:7140–7152. https://doi.org/10.1039/C7TB00873B

    Article  CAS  Google Scholar 

  34. Sun M, He L, Fan Z, Tang R, Du J (2020) Effective treatment of drug-resistant lung cancer via a nanogel capable of reactivating cisplatin and enhancing early apoptosis. Biomaterials 257:120252. https://doi.org/10.1016/j.biomaterials.2020.120252

    Article  CAS  Google Scholar 

  35. Gonzalez-Urias A, Zapata-Gonzalez I, Licea-Claverie A, Licea-Navarro AF, Bernaldez-Sarabia J, Cervantes-Luevano K (2019) Cationic versus anionic core-shell nanogels for transport of cisplatin to lung cancer cells. Colloids Surf B Biointerfaces 182:110365. https://doi.org/10.1016/j.colsurfb.2019.110365

    Article  CAS  Google Scholar 

  36. Zhang W, Tung CH (2018) Redox-responsive cisplatin nanogels for anticancer drug delivery. Chem Commun 54:8367–8370. https://doi.org/10.1039/C8CC01795F

    Article  CAS  Google Scholar 

  37. González-Urías A, Manzanares-Guevara LA, Licea-Claveríe Á, Ochoa-Terán A, Licea-Navarro AF, Bernaldez-Sarabia J, Zapata-González I (2021) Stimuli responsive nanogels with intrinsic fluorescence: Promising nanovehicles for controlled drug delivery and cell internalization detection in diverse cancer cell lines. Eur Polym J 144:110200. https://doi.org/10.1016/j.eurpolymj.2020.110200

    Article  CAS  Google Scholar 

  38. Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A (2016) Application of liposomes in medicine and drug delivery. Nanomed Biotech 44:381–391. https://doi.org/10.3109/21691401.2014.953633

    Article  CAS  Google Scholar 

  39. Carvalho Júnior AD, Vieira FP, De Melo VJ, Lopes MT, Silveira JN, Ramaldes GA, Garnier-Suillerot A, Pereira-Maia EC, De Oliveira MC (2007) Preparation and cytotoxicity of cisplatin-containing liposomes. Braz J Med Biol Res 40:1149–1157. https://doi.org/10.1590/S0100-879X2006005000125

    Article  Google Scholar 

  40. Xiao CJ, Qi XR, Aini W, Wei SL (2003) Preparation of cisplatin multivesicular liposomes and release of cisplatin from the liposomes in vitro. Yao xuexue bao Acta Pharm Sin 38:133–137

    CAS  Google Scholar 

  41. Vhora I, Khatri N, Desai J, Thakkar HP (2014) Caprylate-conjugated cisplatin for the development of novel liposomal formulation. AAPS Pharm Sci Tech 15:845–857. https://doi.org/10.1208/s12249-014-0106-y

    Article  CAS  Google Scholar 

  42. Araújo RS, Silveira AL, e Souza ÉL, Freire RH, de Souza CM, Reis DC, Costa BR, Sugimoto MA, Silveira JN, dos Santos Martins F, Cassali GD (2017) Intestinal toxicity evaluation of long-circulating and pH-sensitive liposomes loaded with cisplatin. Eur J Pharm Sci 106: 142–51. https://doi.org/10.1016/j.ejps.2017.05.046

  43. Sun XY, Liang WQ (2011) Comparison on antitumor activity of cisplatin-loaded liposomes and nanoparticles in vitro. J Zhejiang Univ Med Sci 40:408–413

    CAS  Google Scholar 

  44. Wu M, Huang T, Wang J, Chen P, Mi W, Ying Y, Wang H, Zhao D, Huang S (2018) Antilung cancer effect of ergosterol and cisplatin-loaded liposomes modified with cyclic arginine-glycine-aspartic acid and octa-arginine peptides. Medicine 97:33. https://doi.org/10.1097/MD.0000000000011916

    Article  CAS  Google Scholar 

  45. Song J, Ren W, Xu T, Zhang Y, Guo H, Zhu S, Yang L (2017) Reversal of multidrug resistance in human lung cancer cells by delivery of 3-octadecylcarbamoylacrylic acid–cisplatin-based liposomes. Drug Des Dev Ther 11:441. https://doi.org/10.2147/DDDT.S124912

    Article  CAS  Google Scholar 

  46. Wang S, Gou J, Wang Y, Tan X, Zhao L, Jin X, Tang X (2021) Synergistic antitumor efficacy mediated by liposomal co-delivery of polymeric micelles of vinorelbine and cisplatin in non-small cell lung cancer. Int J Nanomed 16:2357. https://doi.org/10.2147/IJN.S290263

    Article  Google Scholar 

  47. Dou YN, Dunne M, Huang H, Mckee T, Chang MC, Jaffray DA, Allen C (2016) Thermosensitive liposomal cisplatin in combination with local hyperthermia results in tumor growth delay and changes in tumor microenvironment in xenograft models of lung carcinoma. J Drug Target 24:865–877. https://doi.org/10.1080/1061186X.2016.1191079

    Article  CAS  Google Scholar 

  48. Yang YT, Shi Y, Jay M, Di Pasqua AJ (2014) Enhanced toxicity of cisplatin with chemosensitizer phenethyl isothiocyanate toward non-small cell lung cancer cells when delivered in liposomal nanoparticles. Chem Res Toxicol 27:946–948. https://doi.org/10.1021/tx5001128

    Article  CAS  Google Scholar 

  49. Jin Y, Wang Y, Liu X, Zhou J, Wang X, Feng H, Liu H (2020) Synergistic combination chemotherapy of lung cancer: cisplatin and doxorubicin conjugated prodrug loaded, glutathione and pH sensitive nanocarriers. Drug Des Dev Ther 14:5205. https://doi.org/10.2147/DDDT.S260253

    Article  CAS  Google Scholar 

  50. Li C, Li T, Huang L, Yang M, Zhu G (2019) Self-assembled lipid nanoparticles for ratiometric codelivery of cisplatin and siRNA targeting XPF to combat drug resistance in lung cancer. Chem Asian J 14:1570–1576. https://doi.org/10.1002/asia.201900005

    Article  CAS  Google Scholar 

  51. Croy SR, Kwon GS (2006) Polymeric micelles for drug delivery. Curr Pharm Des 12:4669–4684. https://doi.org/10.2174/138161206779026245

    Article  CAS  Google Scholar 

  52. He L, Xu J, Cheng X, Sun M, Wei B, Xiong N, Song J, Wang X, Tang R (2020) Hybrid micelles based on Pt (IV) polymeric prodrug and TPGS for the enhanced cytotoxicity in drug-resistant lung cancer cells. Surf B Biointerfaces 195:111256. https://doi.org/10.1016/j.colsurfb.2020.111256

    Article  CAS  Google Scholar 

  53. Wan X, Min Y, Bludau H, Keith A, Sheiko SS, Jordan R, Wang AZ, Sokolsky-Papkov M, Kabanov AV (2018) Drug combination synergy in worm-like polymeric micelles improves treatment outcome for small cell and non-small cell lung cancer. ACS Nano 12:2426–2439. https://doi.org/10.1021/acsnano.7b07878

    Article  CAS  Google Scholar 

  54. Song W, Li M, Tang Z, Li Q, Yang Y, Liu H, Duan T, Hong H, Chen X (2012) Methoxypoly (ethylene glycol)-block-Poly (L-glutamic acid)-loaded cisplatin and a combination with iRGD for the treatment of non-small-cell lung cancers. Macromol Biosci 12:1514–1523. https://doi.org/10.1002/mabi.201200145

    Article  CAS  Google Scholar 

  55. Zhu YH, Sun CY, Shen S, Khan MI, Zhao YY, Liu Y, Wang YC, Wang J (2017) A micellar cisplatin prodrug simultaneously eliminates both cancer cells and cancer stem cells in lung cancer. Biomater Sci 5:1612–1621. https://doi.org/10.1039/C7BM00278E

    Article  CAS  Google Scholar 

  56. Han Y, Li J, Zan M, Luo S, Ge Z, Liu S (2014) Redox-responsive core cross-linked micelles based on cypate and cisplatin prodrugs-conjugated block copolymers for synergistic photothermal–chemotherapy of cancer. Polym Chem 5:3707–3718. https://doi.org/10.1039/C4PY00064A

    Article  CAS  Google Scholar 

  57. Song W, Tang Z, Li M, Lv S, Sun H, Deng M, Liu H, Chen X (2014) Polypeptide-based combination of paclitaxel and cisplatin for enhanced chemotherapy efficacy and reduced side-effects. Acta Biomater 10:1392–1402. https://doi.org/10.1016/j.actbio.2013.11.026

    Article  CAS  Google Scholar 

  58. Li J, Han Y, Chen Q, Shi H, ur Rehman S, Siddiq M, Ge Z, Liu S (2014) Dual endogenous stimuli-responsive polyplex micelles as smart two-step delivery nanocarriers for deep tumor tissue penetration and combating drug resistance of cisplatin. J Mater Chem B 2:1813–1824. https://doi.org/10.1039/C3TB21383H

    Article  CAS  Google Scholar 

  59. Li J, Ke W, Li H, Zha Z, Han Y, Ge Z (2015) Endogenous stimuli-sensitive multistage polymeric micelleplex anticancer drug delivery system for efficient tumor penetration and cellular internalization. Adv Mater 4:2206–2219. https://doi.org/10.1002/adhm.201500379

    Article  CAS  Google Scholar 

  60. Li M, Tang Z, Lv S, Song W, Hong H, Jing X, Zhang Y, Chen X (2014) Cisplatin crosslinked pH-sensitive nanoparticles for efficient delivery of doxorubicin. Biomaterials 35:3851–3864. https://doi.org/10.1016/j.biomaterials.2014.01.018

    Article  CAS  Google Scholar 

  61. Uchino H, Matsumura Y, Negishi T, Koizumi F, Hayashi T, Honda T, Nishiyama N, Kataoka K, Naito S, Kakizoe T (2005) Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br J Cancer 93:678–687. https://doi.org/10.1038/sj.bjc.6602772

    Article  CAS  Google Scholar 

  62. Sun Y, Yang J, Yang T, Li Y, Zhu R, Hou Y, Liu Y (2021) Co-delivery of IL-12 cytokine gene and cisplatin prodrug by a polymetformin-conjugated nanosystem for lung cancer chemo-gene treatment through chemotherapy sensitization and tumor microenvironment modulation. Acta Biomater 128:447–461. https://doi.org/10.1016/j.actbio.2021.04.034

    Article  CAS  Google Scholar 

  63. Liu M, Fréchet JM (1999) Designing dendrimers for drug delivery. Pharmaceut Sci TechToday 2:393–401. https://doi.org/10.1016/S1461-5347(99)00203-5

    Article  CAS  Google Scholar 

  64. Svenson S, Tomalia DA (2012) Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev 64:102–115. https://doi.org/10.1016/j.addr.2012.09.030

    Article  Google Scholar 

  65. Palmerston Mendes L, Pan J, Torchilin VP (2017) Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22:1401. https://doi.org/10.3390/molecules22091401

    Article  CAS  Google Scholar 

  66. Amreddy N, Babu A, Panneerselvam J, Srivastava A, Muralidharan R, Chen A, Zhao YD, Munshi A, Ramesh R (2018) Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment. Nanomed Nanotechnol Biol Med 14:373–384. https://doi.org/10.1016/j.nano.2017.11.010

    Article  CAS  Google Scholar 

  67. Nguyen H, Nguyen NH, Tran NQ, Nguyen CK (2015) Improved method for preparing cisplatin-dendrimer nanocomplex and its behavior against NCI-H460 lung cancer cell. J Nanosci Nanotechnol 15:4106–4110. https://doi.org/10.1166/jnn.2015.9808

    Article  CAS  Google Scholar 

  68. Kulhari H, Pooja D, Singh MK, Chauhan AS (2015) Optimization of carboxylate-terminated poly (amidoamine) dendrimer-mediated cisplatin formulation. Drug Dev Ind Pharm 41:232–238. https://doi.org/10.3109/03639045.2013.858735

    Article  CAS  Google Scholar 

  69. Zheng W, Cao C, Liu Y, Yu Q, Zheng C, Sun D, Ren X, Liu J (2015) Multifunctional polyamidoamine-modified selenium nanoparticles dual-delivering siRNA and cisplatin to A549/DDP cells for reversal multidrug resistance. Acta Biomater 11:368–380. https://doi.org/10.1016/j.actbio.2014.08.035

    Article  CAS  Google Scholar 

  70. Li Y, Li Y, Zhang X, Xu X, Zhang Z, Hu C, He Y, Gu Z (2016) Supramolecular PEGylated dendritic systems as pH/redox dual-responsive theranostic nanoplatforms for platinum drug delivery and NIR imaging. Theranostics 6:1293. https://doi.org/10.7150/thno.15081

    Article  CAS  Google Scholar 

  71. González-Pastor R, Lancelot A, Morcuende-Ventura V, San Anselmo M, Sierra T, Serrano JL, Martin-Duque P (2021) Combination Chemotherapy with cisplatin and chloroquine: effect of encapsulation in micelles formed by self-assembling hybrid dendritic–linear–dendritic block copolymers. Int J Mol Sci 22:5223. https://doi.org/10.3390/ijms22105223

    Article  CAS  Google Scholar 

  72. Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41:2545–2561. https://doi.org/10.1039/C2CS15327K

    Article  CAS  Google Scholar 

  73. Zhang M, Hagan CT IV, Foley H, Tian X, Yang F, Au KM, Mi Y, Medik Y, Roche K, Wagner K, Rodgers Z (2021) Co-delivery of etoposide and cisplatin in dual-drug loaded nanoparticles synergistically improves chemoradiotherapy in non-small cell lung cancer models. Acta Biomater 124:327–335. https://doi.org/10.1016/j.actbio.2021.02.001

    Article  CAS  Google Scholar 

  74. Li F, Li T, Cao W, Wang L, Xu H (2017) Near-infrared light stimuli-responsive synergistic therapy nanoplatforms based on the coordination of tellurium-containing block polymer and cisplatin for cancer treatment. Biomaterials 133:208–218. https://doi.org/10.1016/j.biomaterials.2017.04.032

    Article  CAS  Google Scholar 

  75. Mukerabigwi JF, Han Y, Lu N, Ke W, Wang Y, Zhou Q, Mohammed F, Ibrahim A, Zheng B, Ge Z (2021) Cisplatin resistance reversal in lung cancer by tumor acidity-activable vesicular nanoreactors via tumor oxidative stress amplification. J Mater Chem B 9:3055–3067. https://doi.org/10.1039/D0TB02876B

    Article  CAS  Google Scholar 

  76. Patel V, Lalani R, Vhora I, Bardoliwala D, Patel A, Ghosh S, Misra A (2021) Co-delivery of cisplatin and siRNA through hybrid nanocarrier platform for masking resistance to chemotherapy in lung cancer. Drug Deliv Transl Res 5:2052–2071. https://doi.org/10.1007/s13346-020-00867-5

    Article  CAS  Google Scholar 

  77. Nejati-Koshki K, Mesgari M, Ebrahimi E, Abbasalizadeh F, Fekri Aval S, Khandaghi AA, Abasi M, Akbarzadeh A (2014) Synthesis and in vitro study of cisplatin-loaded Fe3O4 nanoparticles modified with PLGA-PEG6000 copolymers in treatment of lung cancer. J Microencapsul 31:815–823. https://doi.org/10.3109/02652048.2014.940011

    Article  CAS  Google Scholar 

  78. Tong NA, Nguyen TP, Cuu Khoa N, Tran NQ (2016) Aquated cisplatin and heparin-pluronic nanocomplexes exhibiting sustainable release of active platinum compound and NCI-H460 lung cancer cell antiproliferation. J Biomater Sci Polym Ed 27:709–720. https://doi.org/10.1080/09205063.2016.1154239

    Article  CAS  Google Scholar 

  79. Hong Y, Che S, Hui B, Wang X, Zhang X, Ma H (2020) Combination therapy of lung cancer using layer-by-layer cisplatin prodrug and curcumin co-encapsulated nanomedicine. Drug Des Dev Ther 14:2263. https://doi.org/10.2147/DDDT.S241291

    Article  CAS  Google Scholar 

  80. Shi C, Yu H, Sun D, Ma L, Tang Z, Xiao Q, Chen X (2015) Cisplatin-loaded polymeric nanoparticles: characterization and potential exploitation for the treatment of non-small cell lung carcinoma. Acta Biomater 18:68–76. https://doi.org/10.1016/j.actbio.2015.02.009

    Article  CAS  Google Scholar 

  81. Tseng CL, Su WY, Yen KC, Yang KC, Lin FH (2009) The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials 30:3476–3485. https://doi.org/10.1016/j.biomaterials.2009.03.010

    Article  CAS  Google Scholar 

  82. Zhou Z (2020) Co-drug delivery of regorafenib and cisplatin with amphiphilic copolymer nanoparticles: enhanced in vivo antitumor cancer therapy in nursing care. Drug Deliv 27:1319–1328. https://doi.org/10.1080/10717544.2020.1815897

    Article  CAS  Google Scholar 

  83. He Z, Huang J, Xu Y, Zhang X, Teng Y, Huang C, Wu Y, Zhang X, Zhang H, Sun W (2015) Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer. Oncotarget 6:42150. https://doi.org/10.18632/oncotarget.6243

    Article  Google Scholar 

  84. Wang Z, Li Y, Zhang T, Li H, Yang Z, Wang C (2021) Effect of micelle-incorporated cisplatin with sizes ranging from 8 to 40 nm for the therapy of lewis lung carcinoma. Front Pharmacol 12:632877. https://doi.org/10.3389/fphar.2021.632877

    Article  CAS  Google Scholar 

  85. Yang T, Yu S, Liu L, Sun Y, Lan Y, Ma X, Zhu R, Li L, Hou Y, Liu Y (2020) Dual polymeric prodrug co-assembled nanoparticles with precise ratiometric co-delivery of cisplatin and metformin for lung cancer chemoimmunotherapy. Biomater Sci 8:5698–5714. https://doi.org/10.1039/D0BM01191F

    Article  CAS  Google Scholar 

  86. Su WP, Cheng FY, Shieh DB, Yeh CS, Su WC (2012) PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells. Int J Nanomed 7:4269. https://doi.org/10.2147/IJN.S33666

    Article  CAS  Google Scholar 

  87. Xu C, Wang Y, Guo Z, Chen J, Lin L, Wu J, Tian H, Chen X (2019) Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy. J Control Release 295:153–163. https://doi.org/10.1016/j.jconrel.2018.12.013

    Article  CAS  Google Scholar 

  88. Yu H, Tang Z, Zhang D, Song W, Zhang Y, Yang Y, Ahmad Z, Chen X (2015) Pharmacokinetics, biodistribution and in vivo efficacy of cisplatin loaded poly (L-glutamic acid)-g-methoxy poly (ethylene glycol) complex nanoparticles for tumor therapy. J Control Release 205:89–97. https://doi.org/10.1016/j.jconrel.2014.12.022

    Article  CAS  Google Scholar 

  89. Lo YL, Huang XS, Chen HY, Huang YC, Liao ZX, Wang LF (2021) ROP and ATRP fabricated redox sensitive micelles based on PCL-SS-PMAA diblock copolymers to co-deliver PTX and CDDP for lung cancer therapy. Colloids Surf B Biointerfaces 198:111443. https://doi.org/10.1016/j.colsurfb.2020.111443

    Article  CAS  Google Scholar 

  90. Nascimento AV, Singh A, Bousbaa H, Ferreira D, Sarmento B, Amiji MM (2017) Overcoming cisplatin resistance in non-small cell lung cancer with Mad2 silencing siRNA delivered systemically using EGFR-targeted chitosan nanoparticles. Acta Biomater 47:71–80. https://doi.org/10.1016/j.actbio.2016.09.045

    Article  CAS  Google Scholar 

  91. Motasem MA, Obaidat RM, Alnaief M, Albiss BA, Hailat N (2020) Development, in vitro characterization, and in vivo toxicity evaluation of chitosan-alginate nanoporous carriers loaded with cisplatin for lung cancer treatment. AAPS Pharm Sci Tech 21:1–2. https://doi.org/10.1208/s12249-020-01735-8

    Article  CAS  Google Scholar 

  92. Qu J, Liu Y, Yu Y, Li J, Luo J, Li M (2014) Silk fibroin nanoparticles prepared by electrospray as controlled release carriers of cisplatin. Mater Sci Eng C 44:166–174. https://doi.org/10.1016/j.msec.2014.08.034

    Article  CAS  Google Scholar 

  93. Ling X, Tu J, Wang J, Shajii A, Kong N, Feng C, Zhang Y, Yu M, Xie T, Bharwani Z, Aljaeid BM (2018) Glutathione-responsive prodrug nanoparticles for effective drug delivery and cancer therapy. ACS Nano 13:357–370. https://doi.org/10.1021/acsnano.8b06400

    Article  CAS  Google Scholar 

  94. Xiong Y, Zhao Y, Miao L, Lin CM, Huang L (2016) Co-delivery of polymeric metformin and cisplatin by self-assembled core-membrane nanoparticles to treat non-small cell lung cancer. J Control Release 244:63–73. https://doi.org/10.1016/j.jconrel.2016.11.005

    Article  CAS  Google Scholar 

  95. He Z, Shi Z, Sun W, Ma J, Xia J, Zhang X, Chen W, Huang J (2016) Hemocompatibility of folic-acid-conjugated amphiphilic PEG-PLGA copolymer nanoparticles for co-delivery of cisplatin and paclitaxel: treatment effects for non-small-cell lung cancer. Tumor Biol 37:7809–7821. https://doi.org/10.1007/s13277-015-4634-1

    Article  CAS  Google Scholar 

  96. Wu R, Zhang Z, Wang B, Chen G, Zhang Y, Deng H, Tang Z, Mao J, Wang L (2020) Combination chemotherapy of lung cancer–co-delivery of docetaxel prodrug and cisplatin using aptamer-decorated lipid–polymer hybrid nanoparticles. Drug Des Dev Ther 14:2249. https://doi.org/10.2147/DDDT.S246574

    Article  CAS  Google Scholar 

  97. Tian J, Min Y, Rodgers Z, Au KM, Hagan CT, Zhang M, Roche K, Yang F, Wagner K, Wang AZ (2017) Co-delivery of paclitaxel and cisplatin with biocompatible PLGA–PEG nanoparticles enhances chemoradiotherapy in non-small cell lung cancer models. J Mater Chem B5:6049–6057. https://doi.org/10.1039/C7TB01370A

    Article  Google Scholar 

  98. Obonyo O, Fisher E, Edwards M, Douroumis D (2010) Quantum dots synthesis and biological applications as imaging and drug delivery systems. Crit Rev Biotechnol 30:283–301. https://doi.org/10.3109/07388551.2010.487184

    Article  CAS  Google Scholar 

  99. Sui X, Luo C, Wang C, Zhang F, Zhang J, Guo S (2016) Graphene quantum dots enhance anticancer activity of cisplatin via increasing its cellular and nuclear uptake. Nanomed Nanotechnol Biol Med 12:1997–2006. https://doi.org/10.1016/j.nano.2016.03.010

    Article  CAS  Google Scholar 

  100. Tan S, Wang G (2018) Lung cancer targeted therapy: folate and transferrin dual targeted, glutathione responsive nanocarriers for the delivery of cisplatin. Biomed Pharmacother 102:55–63. https://doi.org/10.1016/j.biopha.2018.03.046

    Article  CAS  Google Scholar 

  101. Wang B, Hu W, Yan H, Chen G, Zhang Y, Mao J, Wang L (2021) Lung cancer chemotherapy using nanoparticles: enhanced target ability of redox-responsive and pH-sensitive cisplatin prodrug and paclitaxel. Biomed Pharmacother 136:111249. https://doi.org/10.1016/j.biopha.2021.111249

    Article  CAS  Google Scholar 

  102. Fan X, Zhao X, Qu X, Fang J (2015) pH sensitive polymeric complex of cisplatin with hyaluronic acid exhibits tumor-targeted delivery and improved in vivo antitumor effect. Int J Pharm 496:644–653. https://doi.org/10.1016/j.ijpharm.2015.10.066

    Article  CAS  Google Scholar 

  103. Zhang W, Shen J, Su H, Mu G, Sun JH, Tan CP, Liang XJ, Ji LN, Mao ZW (2016) Co-delivery of cisplatin prodrug and chlorin e6 by mesoporous silica nanoparticles for chemo-photodynamic combination therapy to combat drug resistance. ACS Appl Mater 8:13332–13340. https://doi.org/10.1021/acsami.6b03881

    Article  CAS  Google Scholar 

  104. Liu J, Guo X, Luo Z, Zhang J, Li M, Cai K (2018) Hierarchically stimuli-responsive nanovectors for improved tumor penetration and programedtumor therapy. Nanoscale 10:13737–13750. https://doi.org/10.1039/C8NR02971G

    Article  CAS  Google Scholar 

  105. Taratula O, Garbuzenko OB, Chen AM, Minko T (2011) Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. J Drug Target 19:900–914. https://doi.org/10.3109/1061186X.2011.622404

    Article  CAS  Google Scholar 

  106. Park SS, Jung MH, Lee YS, Bae JH, Kim SH, Ha CS (2019) Functionalised mesoporous silica nanoparticles with excellent cytotoxicity against various cancer cells for pH-responsive and controlled drug delivery. Mater Desl 84:108187. https://doi.org/10.1016/j.matdes.2019.108187

    Article  CAS  Google Scholar 

  107. Huang L, Liu M, Mao L, Huang Q, Huang H, Zeng G, Tian J, Wen Y, Zhang X, Wei Y (2018) A facile FeBr 3 based photoATRP for surface modification of mesoporous silica nanoparticles for controlled delivery cisplatin. Appl Surf Sci 434:204–210. https://doi.org/10.1016/j.apsusc.2017.10.187

    Article  CAS  Google Scholar 

  108. Zhu X, Gu J, Li Y, Zhao W, Shi J (2014) Magnetic core-mesoporous shell nanocarriers with drug anchorages suspended in mesopore interior for cisplatin delivery. Microporous Mesoporous Mater 196:115–121. https://doi.org/10.1016/j.micromeso.2014.04.057

    Article  CAS  Google Scholar 

  109. Ahn B, Park J, Singha K, Park H, Kim WJ (2013) Mesoporous silica nanoparticle-based cisplatin prodrug delivery and anticancer effect under reductive cellular environment. J Mater Chem B 1:2829–2836. https://doi.org/10.1039/C3TB20319K

    Article  CAS  Google Scholar 

  110. Zhang X, He C, Liu X, Chen Y, Zhao P, Chen C, Yan R, Li M, Fan T, Altine B, Yang T (2020) One-pot synthesis of a microporous organosilica-coated cisplatin nanoplatform for HIF-1-targeted combination cancer therapy. Theranostics 10:2918. https://doi.org/10.7150/thno.41077

    Article  CAS  Google Scholar 

  111. Munaweera I, Shi Y, Koneru B, Patel A, Dang MH, Di Pasqua AJ, Balkus KJ Jr (2015) Nitric oxide-and cisplatin-releasing silica nanoparticles for use against non-small cell lung cancer. J Inorg Biochem 153:23–31. https://doi.org/10.1016/j.jinorgbio.2015.09.002

    Article  CAS  Google Scholar 

  112. Zhang XK, Wang QW, Xu YJ, Sun HM, Wang L, Zhang LX (2014) Co-delivery of cisplatin and oleanolic acid by silica nanoparticles-enhanced apoptosis and reverse multidrug resistance in lung cancer. The Kaohsiung J Med Sci 37(6):505–512. https://doi.org/10.1002/kjm2.12365

    Article  CAS  Google Scholar 

  113. Chiang CS, Tseng YH, Liao BJ, Chen SY (2015) Magnetically targeted nanocapsules for PAA-cisplatin-conjugated cores in PVA/SPIO shells via surfactant-free emulsion for reduced nephrotoxicity and enhanced lung cancer therapy. Adv Healthcare Mater 4:1066–1075. https://doi.org/10.1002/adhm.201400794

    Article  CAS  Google Scholar 

  114. Gao Z, Li Y, You C, Sun K, An P, Sun C, Wang M, Zhu X, Sun B (2018) Iron oxide nanocarrier-mediated combination therapy of cisplatin and artemisinin for combating drug resistance through highly increased toxic reactive oxygen species generation. ACS Appl Bio Mater 1:270–280. https://doi.org/10.1021/acsabm.8b00056

    Article  CAS  Google Scholar 

  115. Hu C, Du W (2020) Zinc oxide nanoparticles (ZnO NPs) combined with cisplatin and gemcitabine inhibits tumor activity of NSCLC cells. Aging 12:25767. https://doi.org/10.18632/aging.104187

    Article  CAS  Google Scholar 

  116. Stathopoulos GP, Antoniou D, Dimitroulis J, Michalopoulou P, Bastas A, Marosis K, Stathopoulos J, Provata A, Yiamboudakis P, Veldekis D, Lolis N (2010) Liposomal cisplatin combined with paclitaxel versus cisplatin and paclitaxel in non-small-cell lung cancer: a randomized phase III multicenter trial. Ann Oncol 21:2227–2232. https://doi.org/10.1093/annonc/mdq234

    Article  CAS  Google Scholar 

  117. https://clinicaltrials.gov/ct2/show/NCT02996214?term=liposomal+cisplatin&cond=Lung+Cancer&draw=2&rank=1

  118. https://clinicaltrials.gov/ct2/show/record/NCT01393080?term=liposomal+cisplatin&cond=Lung+Cancer&draw=2&rank=3

  119. https://clinicaltrials.gov/ct2/show/record/NCT00006036?term=liposomal+cisplatin&cond=Lung+Cancer&draw=2&rank=2

  120. https://clinicaltrials.gov/ct2/show/NCT02016209?term=NCT02016209&draw=2&rank=1

  121. Aldawsari HM, Singh S (2020) Rapid microwave-assisted cisplatin-loaded solid lipid nanoparticles: synthesis, characterization and anticancer study. Nanomaterials 10(3):510. https://doi.org/10.3390/nano10030510

    Article  CAS  Google Scholar 

  122. Liu B, Han L, Liu J, Han S, Chen Z, Jiang L (2017) Co-delivery of paclitaxel and TOS-cisplatin via TAT-targeted solid lipid nanoparticles with synergistic antitumor activity against cervical cancer. Int J Nanomed 12:955–968. https://doi.org/10.2147/IJN.S115136

    Article  CAS  Google Scholar 

  123. Zhang G, Liu F, Jia E, Jia L, Zhang Y (2016) Folate-modified, cisplatin-loaded lipid carriers for cervical cancer chemotherapy. Drug Deliv 23(4):1393–1397. https://doi.org/10.3109/10717544.2015.1054052

    Article  CAS  Google Scholar 

  124. Wang JY, Wang Y, Meng X (2016) Chitosan nanolayered cisplatin-loaded lipid nanoparticles for enhanced anticancer efficacy in cervical cancer. Nanoscale Res Lett 11(1):1–8. https://doi.org/10.1186/s11671-016-1698-9

    Article  CAS  Google Scholar 

  125. Yang C, Lv J, Lv T, Pan Y, Han Y, Zhao S, Wang J (2016) Metal ion-assisted drug-loading model for novel delivery system of cisplatin solid lipid nanoparticles with improving loading efficiency and sustained release. J Microencapsul 33(3):292–298. https://doi.org/10.1080/02652048.2016.1176079

    Article  CAS  Google Scholar 

  126. Gao XJ, Li AQ, Zhang X, Liu P, Wang JR, Cai X (2015) Thyroid-stimulating hormone (TSH)-armed polymer–lipid nanoparticles for the targeted delivery of cisplatin in thyroid cancers: Therapeutic efficacy evaluation. RSC Adv 5(129):106413–106420. https://doi.org/10.1039/C5RA12588J

    Article  CAS  Google Scholar 

  127. Dana P, Bunthot S, Suktham K, Surassmo S, Yata T, Namdee K, Yingmema W, Yimsoo T, Ruktanonchai UR, Sathornsumetee S, Saengkrit N (2020) Active targeting liposome-PLGA composite for cisplatin delivery against cervical cancer. Colloids Surf B: Biointerfaces 196:111270. https://doi.org/10.1016/j.colsurfb.2020.111270

    Article  CAS  Google Scholar 

  128. Moreno D, Zalba S, Navarro I, de Ilarduya CT, Garrido MJ (2010) Pharmacodynamics of cisplatin-loaded PLGA nanoparticles administered to tumor-bearing mice. Eur J Pharm Biopharm 74(2):265–274. https://doi.org/10.1016/j.ejpb.2009.10.005

    Article  CAS  Google Scholar 

  129. Alkahtani S, Alarifi S, Albasher G, Al-Zharani M, Aljarba NH, Almarzoug MH, Alhoshani NM, Al-Johani NS, Alothaid H, Alkahtane AA (2021) Poly lactic-co-glycolic acid-(PLGA-) loaded nanoformulation of cisplatin as a therapeutic approach for breast cancers. Oxid Med Cell Longev. https://doi.org/10.1155/2021/5834418

    Article  Google Scholar 

  130. Cheng L, Jin C, Lv W, Ding Q, Han X (2011) Developing a highly stable PLGA-mPEG nanoparticle loaded with cisplatin for chemotherapy of ovarian cancer. PLoS ONE 6(9):25433. https://doi.org/10.1371/journal.pone.0025433

    Article  CAS  Google Scholar 

  131. Gryparis EC, Hatziapostolou M, Papadimitriou E, Avgoustakis K (2007) Anticancer activity of cisplatin-loaded PLGA-mPEG nanoparticles on LNCaP prostate cancer cells. Eur J Pharm Biopharm 67(1):1–8. https://doi.org/10.1016/j.ejpb.2006.12.017

    Article  CAS  Google Scholar 

  132. Alam N, Koul M, Mintoo MJ, Khare V, Gupta R, Rawat N, Sharma PR, Singh SK, Mondhe DM, Gupta PN (2017) Development and characterization of hyaluronic acid modified PLGA based nanoparticles for improved efficacy of cisplatin in solid tumor. Biomed Pharmacother 95:856–864. https://doi.org/10.1016/j.biopha.2017.08.108

    Article  CAS  Google Scholar 

  133. Yellepeddi VK, Kumar A, Maher DM, Chauhan SC, Vangara KK, Palakurthi S (2011) Biotinylated PAMAM dendrimers for intracellular delivery of cisplatin to ovarian cancer: role of SMVT. Anticancer Res 31(3):897–906

    CAS  Google Scholar 

  134. Guo XL, Kang XX, Wang YQ, Zhang XJ, Li CJ, Liu Y, Du LB (2019) Co-delivery of cisplatin and doxorubicin by covalently conjugating with polyamidoamine dendrimer for enhanced synergistic cancer therapy. Acta Biomater 84:367–377. https://doi.org/10.1016/j.actbio.2018.12.007

    Article  CAS  Google Scholar 

  135. Yellepeddi VK, Vangara KK, Palakurthi S (2013) Poly (amido) amine (PAMAM) dendrimer–cisplatin complexes for chemotherapy of cisplatin-resistant ovarian cancer cells. J Nanopart Res 15(9):1–5. https://doi.org/10.1007/s11051-013-1897-6

    Article  Google Scholar 

  136. Xiao X, Wang T, Li L, Zhu Z, Zhang W, Cui G, Li W (2019) Co-delivery of cisplatin (IV) and capecitabine as an effective and non-toxic cancer treatment. Front Pharmacol 10:110. https://doi.org/10.3389/fphar.2019.00110

    Article  CAS  Google Scholar 

  137. Zhuang W, Ma B, Liu G, Chen X, Wang Y (2018) A fully absorbable biomimetic polymeric micelle loaded with cisplatin as drug carrier for cancer therapy. Regen Biomater 5(1):1–8. https://doi.org/10.1093/rb/rbx012

    Article  CAS  Google Scholar 

  138. Zhang X, Li L, Li C, Zheng H, Song H, Xiong F, Qiu T, Yang J (2017) Cisplatin-crosslinked glutathione-sensitive micelles loaded with doxorubicin for combination and targeted therapy of tumors. Carbohydr Polym 155:407–415. https://doi.org/10.1016/j.carbpol.2016.08.072

    Article  CAS  Google Scholar 

  139. Surnar B, Sharma K, Jayakannan M (2015) Core–shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells. Nanoscale 7(42):17964–17979. https://doi.org/10.1039/C5NR04963F

    Article  CAS  Google Scholar 

  140. Plummer R, Wilson RH, Calvert H, Boddy AV, Griffin M, Sludden J, Tilby MJ, Eatock M, Pearson DG, Ottley CJ, Matsumura Y (2011) A Phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br J Cancer 104(4):593–598. https://doi.org/10.1038/bjc.2011.6

    Article  CAS  Google Scholar 

  141. Rademaker-Lakhai JM, Terret C, Howell SB, Baud CM, De Boer RF, Pluim D, Beijnen JH, Schellens JH, Droz JP (2004) A Phase I and pharmacological study of the platinum polymer AP5280 given as an intravenous infusion once every 3 weeks in patients with solid tumors. Clin Cancer Res 10(10):3386–3395. https://doi.org/10.1158/1078-0432.CCR-03-0315

    Article  CAS  Google Scholar 

  142. https://clinicaltrials.gov/ct2/show/NCT00004033

  143. Harrington KJ, Lewanski CR, Northcote AD, Whittaker J, Wellbank H, Vile RG, Peters AM, Stewart JS (2001) Phase I-II study of pegylated liposomal cisplatin (SPI-077™) in patients with inoperable head and neck cancer. Ann Oncol 12(4):493–496. https://doi.org/10.1023/A:1011199028318

    Article  CAS  Google Scholar 

  144. de Jonge MJ, Slingerland M, Loos WJ, Wiemer EA, Burger H, Mathijssen RH, Kroep JR, den Hollander MA, van der Biessen D, Lam MH, Verweij J (2010) Early cessation of the clinical development of LiPlaCis, a liposomal cisplatin formulation. Eur J Cancer 46(16):3016–3021. https://doi.org/10.1016/j.ejca.2010.07.015

    Article  CAS  Google Scholar 

  145. Boulikas T (2009) Clinical overview on Lipoplatin™: a successful liposomal formulation of cisplatin. Expert Opin Investig Drugs 18(8):1197–1218. https://doi.org/10.1517/13543780903114168

    Article  CAS  Google Scholar 

Download references

Funding

Authors acknowledge the funding support from Indian Council of Medical Research (ICMR), Grant No. 45/10/2022/ NAN/BMS.

Author information

Authors and Affiliations

Authors

Contributions

Mr. Pavan SR carried out the literature survey and drafted the manuscript. Dr. Ashwini Prabhu conceptualized the review and framed the outline of the study along with critical revision of the manuscript.

Corresponding author

Correspondence to Ashwini Prabhu.

Ethics declarations

Conflict of interest

None.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavan, S.R., Prabhu, A. Advanced cisplatin nanoformulations as targeted drug delivery platforms for lung carcinoma treatment: a review. J Mater Sci 57, 16192–16227 (2022). https://doi.org/10.1007/s10853-022-07649-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07649-z

Navigation