Skip to main content

Advertisement

Log in

Novel trends and recent progress on preparation methods of biodegradable metallic foams for biomedicine: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Porous degradable metallic biomaterials are attracting considerable attention as promising bone implant materials. Recently, the interest in developing new biomaterials with enhanced performance stimulates the widespread development of fabricating techniques for porous metals. In this work, the recent progress and novel trends on preparation methods of metallic foams for biomedicine were systematically reviewed. The common synthesis methods for porous Mg, Fe, Zn, and their alloys intended for orthopedic applications are comprehensively discussed and compared. The advantages and disadvantages of relevant manufacturing strategies are evaluated. While the modern techniques enable fabrication of complex porous structures and customized shapes, the cost-effective and easy controllable approach are major benefits of traditional methods. Main structural characteristics and properties of biomaterials fabricated using different routes are also presented. Furthermore, the future research directions and current challenges are mentioned. The ambition of this review article is to provide useful guidelines for researchers to choose suitable manufacturing technique to prepare materials with desired structural topology and mechanical, and degradation properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32

Similar content being viewed by others

References

  1. Eurostat (hlth_co_proc2) https://ec.europa.eu/eurostat/web/products-datasets/-/hlth_co_proc2

  2. Beaty JH (2009) The future of orthopedics. J Orthop Sci 14:245–247. https://doi.org/10.1007/s00776-008-1320-9

    Article  Google Scholar 

  3. Dolcimascolo A, Calabrese G, Conoci S, Parenti R (2019) Innovative Biomaterials for Tissue Engineering. In: Barbeck M (ed) Biomaterial-supported Tissue Reconstruction or Regeneration. IntechOpen, pp 1–18. DOI: https://doi.org/10.5772/intechopen.83839

  4. Ivanova EP, Bazaka K, Crawford RJ (2014) Metallic biomaterials: types and advanced applications. In: New Functional Biomaterials for Medicine and Healthcare. Woodhead Publishing Limited, pp 121–147. https://doi.org/10.1533/9781782422662.121

  5. Hayes JS, Richards RG (2019) Osseointegration of permanent and temporary orthopedic implants. In: Narayan R (ed) Encyclopedia of biomedical engineering, vol 1, Biomaterials: in vitro and in vivo studies of biomaterials. Elsevier, Amsterdam, pp 257–269. https://doi.org/10.1016/B978-0-12-801238-3.00225-7

  6. Rahim MI, Ullah S, Mueller PP (2018) Advances and challenges of biodegradable implant materials with a focus on magnesium-alloys and bacterial infections. Metals 8:532. https://doi.org/10.3390/met8070532

    Article  CAS  Google Scholar 

  7. Hermawan H (2018) Updates on the research and development of absorbable metals for biomedical applications. Prog Biomater 7:93–110. https://doi.org/10.1007/s40204-018-0091-4

    Article  CAS  Google Scholar 

  8. Salerno A, Netti PA (2014) Introduction to biomedical foams. In: Netti PA (ed) Biomedical Foams for Tissue Engineering Applications. Woodhead Publishing Limited, pp 3–39. https://doi.org/10.1533/9780857097033.1.3

  9. Hench LL (2005) Bioceramics. J Am Ceram Soc 81:1705–1728. https://doi.org/10.1111/j.1151-2916.1998.tb02540.x

    Article  Google Scholar 

  10. Niinomi M (2008) Metallic biomaterials. J Artif Organs 11:105–110. https://doi.org/10.1007/s10047-008-0422-7

    Article  CAS  Google Scholar 

  11. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734. https://doi.org/10.1016/j.biomaterials.2005.10.003

    Article  CAS  Google Scholar 

  12. Tan L, Yu X, Wan P, Yang K (2013) Biodegradable Materials for Bone Repairs: A Review. J Mater Sci Technol 29:503–513. https://doi.org/10.1016/j.jmst.2013.03.002

  13. Ashammakhi N, Rokkanen P (1997) Absorbable polyglycolide devices in trauma and bone surgery. Biomaterials 18:3–9. https://doi.org/10.1016/S0142-9612(96)00107-X

    Article  CAS  Google Scholar 

  14. Wong HM, Yeung KWK, Lam KO, Tam V, Chu PK, Luk KDK, Cheung KMC (2010) A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 31:2084–2096. https://doi.org/10.1016/j.biomaterials.2009.11.111

    Article  CAS  Google Scholar 

  15. Witte F, Ulrich H, Rudert M, Willbold E (2007) Biodegradable magnesium scaffolds: Part 1: Appropriate inflammatory response. J Biomed Mater Res Part A 81A:748–756. https://doi.org/10.1002/jbm.a.31170

    Article  CAS  Google Scholar 

  16. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017. https://doi.org/10.1126/science.1067404

    Article  CAS  Google Scholar 

  17. Hrubovčáková M, Kupková M, Džupon M (2016) Fe and Fe-P foam for biodegradable bone replacement material: morphology, corrosion behaviour, and mechanical properties. Adv Mater Sci Eng 2016:6257368. https://doi.org/10.1155/2016/6257368

    Article  CAS  Google Scholar 

  18. Popescu IN, Vidu R, Bratu V (2017) Porous metallic biomaterials processing (Review) Part 1: compaction, sintering behavior, properties and medical applications. Sci Bull Valahia Univ Mater Mech 15:28–40. https://doi.org/10.1515/bsmm-2017-0015

    Article  Google Scholar 

  19. Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35:403–440. https://doi.org/10.1016/j.progpolymsci.2010.01.006

    Article  CAS  Google Scholar 

  20. Ryan G, Pandit A, Apatsidis D (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27:2651–2670. https://doi.org/10.1016/j.biomaterials.2005.12.002

    Article  CAS  Google Scholar 

  21. Yusop AH, Bakir AA, Shaharom NA, Abdul Kadir MR, Hermawan H (2012) Porous biodegradable metals for hard tissue scaffolds: A review. Int J Biomater 2012. https://doi.org/10.1155/2012/641430

  22. Chang CH, Lin FH, Kuo TF, Liu HC (2005) Cartilage tissue engineering. Biomed Eng Appl Basis Commun 17:61–71. https://doi.org/10.4015/S101623720500010X

    Article  Google Scholar 

  23. Risbud MV, Sittinger M (2002) Tissue engineering: advances in in vitro cartilage generation. Trends Biotechnol 20:351–356. https://doi.org/10.1016/S0167-7799(02)02016-4

    Article  CAS  Google Scholar 

  24. Liao JD, Lee H, Yao CK (2013) Powder metallurgy based porous metal biomaterials. J Powder Metall Min 2:109. https://doi.org/10.4172/2168-9806.1000109

    Article  Google Scholar 

  25. Goodall R (2013) Porous metals: foams and sponges. In: Chang I, Zhao Y (eds) Advances in Powder Metallurgy, Properties, processing and applications, Chapter 10, Woodhead Publishing Limited, pp 273–307. DOI: https://doi.org/10.1533/9780857098900.2.273

  26. Shuai C, Li S, Peng S, Feng P, Lai Y, Gao C (2019) Biodegradable metallic bone implants. Mater Chem Front 3:544–562. https://doi.org/10.1039/c8qm00507a

    Article  CAS  Google Scholar 

  27. Han Y, Choi J, Kim H-S, Kim H, Park J (2013) Control of pore and window size of ceramic foams with tri-modal pore structure: Influence of agar concentration. Mater Lett 110:256–259. https://doi.org/10.1016/j.matlet.2013.05.100

    Article  CAS  Google Scholar 

  28. Rouwkema J, Rivron NC, Van Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26:434–441. https://doi.org/10.1016/j.tibtech.2008.04.009

    Article  CAS  Google Scholar 

  29. Murphy CM, Haugh MG, O’Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466. https://doi.org/10.1016/j.biomaterials.2009.09.063

    Article  CAS  Google Scholar 

  30. Wu S, Liu X, Yeung KWK, Liu C, Yang X (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R 80:1–36. https://doi.org/10.1016/j.mser.2014.04.001

    Article  Google Scholar 

  31. Xie Y, Zhao L, Zhang Z, Wang X, Wang R, Cui C (2018) Fabrication and properties of porous Zn-Ag alloy scaffolds as biodegradable materials. Mater Chem Phys 219:433–443. https://doi.org/10.1016/j.matchemphys.2018.08.023

    Article  CAS  Google Scholar 

  32. Čapek J, Jablonská E, Lipov J, Kubatík TF, Vojtěch D (2018) Preparation and characterization of porous zinc prepared by spark plasma sintering as a material for biodegradable scaffolds. Mater Chem Phys 203:249–258. https://doi.org/10.1016/j.matchemphys.2017.10.008

    Article  CAS  Google Scholar 

  33. Gorejová R, Haverová L, Oriňaková R, Oriňak A, Oriňak M (2019) Recent advancements in Fe-based biodegradable materials for bone repair. J Mater Sci 54:1913–1947. https://doi.org/10.1007/s10853-018-3011-z

    Article  CAS  Google Scholar 

  34. Oriňaková R, Gorejová R, Orságová Králová Z, Oriňak A (2020) Surface modifications of biodegradable metallic foams for medical applications. Coatings 10:819. https://doi.org/10.3390/coatings10090819

    Article  CAS  Google Scholar 

  35. Venezuela J, Dargusch MS (2019) The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: a comprehensive review. Acta Biomater 87:1–40. https://doi.org/10.1016/j.actbio.2019.01.035

    Article  CAS  Google Scholar 

  36. Pierson D, Edick J, Tauscher A, Pokorney E, Bowen P, Gelbaugh J, Stinson J, Getty H, Lee CH, Drelich J, Goldman J (2012) A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials. J Biomed Mater Res B Appl Biomater 100:58–67. https://doi.org/10.1002/jbm.b.31922

    Article  CAS  Google Scholar 

  37. Gu X, Zheng Y, Cheng Y, Zhong S, Xi T (2009) In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 30:484–498. https://doi.org/10.1016/j.biomaterials.2008.10.021

    Article  CAS  Google Scholar 

  38. Radha R, Sreekanth D (2017) Insight of magnesium alloys and composites for orthopedic implant applications – a review. J Magnes Alloy 5:286–312. https://doi.org/10.1016/j.jma.2017.08.003

    Article  CAS  Google Scholar 

  39. Erryani A, Pramuji F, Annur D, Amal MI, Kartika I (2017) Microstructures and Mechanical Study of Mg Alloy Foam Based on Mg-Zn-Ca-CaCO3. IOP Conf Ser: Mater Sci Eng 202. https://doi.org/10.1088/1757-899X/202/1/012028

  40. Malladi L, Mahapatro A, Gomes AS (2018) Fabrication of magnesium-based metallic scaffolds for bone tissue engineering. Mater Technol 33:173–182. https://doi.org/10.1080/10667857.2017.1404278

    Article  CAS  Google Scholar 

  41. Banhart J, Baumeister J (1998) Production methods for metallic foams. Mater Res Soc Symp Proc 521:121–132. https://doi.org/10.1557/proc-521-121

    Article  CAS  Google Scholar 

  42. Banhart J (2007) Metal Foams—from Fundamental Research to Applications. In: Raj B, Ranganathan S, Bhanu Sankara Rao K, Matthew MD, Shankar P (eds) Frontiers in the Design of Materials, Universities Press Limited, India, pp 279–289. ISBN 9781420047301

  43. Yang D, Seo C, Hur BY (2008) Mg alloy foam fabrication via melt foaming method. J Mater Sci Technol 24:302–304. https://www.jmst.org/EN/Y2008/V24/I03/302

  44. Tane M, Nakajima H (2008) Fabrication of porous magnesium with directional pores through use of hydrogen thermally decomposed from MgH2 powders during unidirectional solidification. J Mater Res 23:849–855. https://doi.org/10.1557/jmr.2008.0105

    Article  CAS  Google Scholar 

  45. Yang DH, Hur BY, Yang SR (2008) Study on fabrication and foaming mechanism of Mg foam using CaCO3 as blowing agent. J Alloys Compd 461:221–227. https://doi.org/10.1016/j.jallcom.2007.07.098

    Article  CAS  Google Scholar 

  46. Vahidgolpayegani A, Wen C, Hodgson P, Li Y (2017) Production methods and characterization of porous Mg and Mg alloys for biomedical applications. In: Wen C (ed) Metallic foam bone: processing, modification and characterization and properties. Woodhead Publishing, Duxford, Eng, pp 25–82. https://doi.org/10.1016/B978-0-08-101289-5.00002-0

  47. Xu ZG, Fu JW, Luo TJ, Yang YS (2012) Effects of cell size on quasi-static compressive properties of Mg alloy foams. Mater Des 34:40–44. https://doi.org/10.1016/j.matdes.2011.07.066

    Article  CAS  Google Scholar 

  48. Yuan L, Yanxiang L, Jiang W, Huawei Z (2005) Evaluation of porosity in lotus-type porous magnesium fabricated by metal/gas eutectic unidirectional solidification. Mater Sci Eng A 402:47–54. https://doi.org/10.1016/j.msea.2005.03.107

    Article  CAS  Google Scholar 

  49. Zhou C, Liu Y, Zhang H, Chen X, Li Y (2020) Compressive and corrosion properties of Lotus-type porous Mg-Mn alloys fabricated by unidirectional solidification. Metall Mater Trans A Phys Metall Mater Sci 51:3238–3247. https://doi.org/10.1007/s11661-020-05732-1

    Article  CAS  Google Scholar 

  50. Zhang YQ, Li Y, Liu H, Bai J, Bao NR, Zhang Y, He P, Zhao JN, Tao L, Xue F, Zhou GX, Fan GT (2018) Mechanical and biological properties of a biodegradable Mg-Zn-Ca porous alloy. Orthop Surg 10:160–168. https://doi.org/10.1111/os.12378

    Article  Google Scholar 

  51. Bach F, Bormann D, Kucharski R, Meyer-Lindenberg A (2007) Magnesium sponges as a bioabsorbable material—attributes and challenges. Int J Mat Res 98:609–612. https://doi.org/10.3139/146.101514

    Article  CAS  Google Scholar 

  52. Lietaert K, Weber L, Van Humbeeck J, Mortensen A, Luyten J, Schrooten J (2013) Open cellular magnesium alloys for biodegradable orthopaedic implants. J Magnes Alloy 1:303–311. https://doi.org/10.1016/j.jma.2013.11.004

    Article  CAS  Google Scholar 

  53. Atrens A, Liu M, Zainal Abidin NI (2011) Corrosion mechanism applicable to biodegradable magnesium implants. Mater Sci Eng B Solid-State Mater Adv Technol 176:1609–1636. https://doi.org/10.1016/j.mseb.2010.12.017

    Article  CAS  Google Scholar 

  54. Yue X-Z, Kitazono K, Yue X-J, Hur B-Y (2016) Effect of fluidity on the manufacturing of open cell magnesium alloy foams. J Magnes Alloys 4:1–7. https://doi.org/10.1016/j.jma.2015.11.007

    Article  CAS  Google Scholar 

  55. Witte F, Reifenrath J, Müller PP, Crostack HA, Nellesen J, Bach FW, Bormann D, Rudert M (2006) Cartilage repair on magnesium scaffolds used as a subchondral bone replacement. Materwiss Werksttech 37:504–508. https://doi.org/10.1002/mawe.200600027

    Article  CAS  Google Scholar 

  56. Ferri JM, Molina JM, Louis E (2015) Fabrication of Mg foams for biomedical applications by means of a replica method based upon spherical carbon particles. Biomed Phys Eng Express 1. https://doi.org/10.1088/2057-1976/1/4/045002

  57. Posada VM, Orozco C, Ramirez Patino JF, Fernandez-Morales P (2018) Human bone inspired design of an Mg Alloy-based foam. Mater Sci Forum 933:291–296. https://doi.org/10.4028/www.scientific.net/msf.933.291

    Article  Google Scholar 

  58. Wen CE, Yamada Y, Shimojima K, Chino Y, Hosokawa H, Mabuchi M (2004) Compressibility of porous magnesium foam: dependency on porosity and pore size. Mater Lett 58:357–360. https://doi.org/10.1016/S0167-577X(03)00500-7

    Article  CAS  Google Scholar 

  59. Zhuang H, Han Y, Feng A (2008) Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds. Mater Sci Eng C 28:1462–1466. https://doi.org/10.1016/j.msec.2008.04.001

    Article  CAS  Google Scholar 

  60. Seyedraoufi ZS, Mirdamadi S (2013) Synthesis, microstructure and mechanical properties of porous Mg-Zn scaffolds. J Mech Behav Biomed Mater 21:1–8. https://doi.org/10.1016/j.jmbbm.2013.01.023

    Article  CAS  Google Scholar 

  61. Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T (2001) Processing of biocompatible porous Ti and Mg. Scr Mater 45:1147–1153. https://doi.org/10.1016/S1359-6462(01)01132-0

    Article  CAS  Google Scholar 

  62. Liu C, Wang J, Gao C, Wang Z, Zhou X, Tang M, Yu K, Deng Y (2020) Enhanced osteoinductivity and corrosion resistance of dopamine/gelatin/rhBMP-2–coated β-TCP/Mg-Zn orthopedic implants: An in vitro and in vivo study. PLoS ONE 15:1–24. https://doi.org/10.1371/journal.pone.0228247

    Article  CAS  Google Scholar 

  63. Kang MH, Lee H, Jang TS, Seong YJ, Kim HE, Koh YH, Song J, Do Jung H (2019) Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration. Acta Mater 84:453–467. https://doi.org/10.1016/j.actbio.2018.11.045

    Article  CAS  Google Scholar 

  64. Angelini E, De Benedetti B, Fulginiti D, Grassini S, Ferraris F, Parvis M (2015) Development and characterization of porous magnesium bioresorbable implants. 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings. Turin 2015:633–638. https://doi.org/10.1109/MeMeA.2015.7145280

    Article  Google Scholar 

  65. Sezer N, Evis Z, Koç M (2020) Additive manufacturing of biodegradable magnesium implants and scaffolds: Review of the recent advances and research trends. In Press, J Magnes Alloys. https://doi.org/10.1016/j.jma.2020.09.014

    Book  Google Scholar 

  66. Li Y, Zhou J, Pavanram P, Leeflang MA, Fockaert LI, Pouran B, Tümer N, Schröder KU, Mol JMC, Weinans H, Jahr H, Zadpoor AA (2018) Additively manufactured biodegradable porous magnesium. Acta Biomater 67:378–392. https://doi.org/10.1016/j.actbio.2017.12.008

    Article  CAS  Google Scholar 

  67. Jasmawati N, Djuansjah JRP, Kadir MRA, Sukmana I (2015) Porous magnesium scaffolds for bone implant applications: a review. Adv Mater Res 1125:437–440. https://doi.org/10.4028/www.scientific.net/amr.1125.437

    Article  Google Scholar 

  68. Yang Y, He C, Dianyu E, Yang W, Qi F, Xie D, Shen L, Peng S, Shuai C (2020) Mg bone implant: Features, developments and perspectives. Mater Des 185. https://doi.org/10.1016/j.matdes.2019.108259

  69. Zhang M, Chen C, Liu C, Wang S (2018) Study on porous Mg-Zn-Zr ZK61 alloys produced by laser additive manufacturing. Metals 8:635. https://doi.org/10.3390/met8080635

    Article  CAS  Google Scholar 

  70. Yang Y, Wu P, Lin X, Liu Y, Bian H, Zhou Y, Gao C, Shuai C (2016) System development, formability quality and microstructure evolution of selective laser-melted magnesium. Virtual Phys Prototyp 11:173–181. https://doi.org/10.1080/17452759.2016.1210522

    Article  Google Scholar 

  71. Hu D, Wang Y, Zhang D, Hao L, Jiang J, Li Z, Chen Y (2015) Experimental investigation on selective laser melting of bulk net-shape pure magnesium. Mater Manuf Process 30:1298–1304. https://doi.org/10.1080/10426914.2015.1025963

    Article  CAS  Google Scholar 

  72. Nguyen TL, Staiger MP, Dias GJ, Woodfield TBF (2011) A novel manufacturing route for fabrication of topologically-ordered porous magnesium scaffolds. Adv Eng Mater 13:872–881. https://doi.org/10.1002/adem.201100029

    Article  CAS  Google Scholar 

  73. Staiger MP, Kolbeinsson I, Kirkland NT, Nguyen T, Dias G, Woodfield TBF (2010) Synthesis of topologically-ordered open-cell porous magnesium. Mater Lett 64:2572–2574. https://doi.org/10.1016/j.matlet.2010.08.049

    Article  CAS  Google Scholar 

  74. Kirkland NT, Kolbeinsson I, Woodfield T, Dias G, Staiger MP (2009) Processing-property relationships of as-cast magnesium foams with controllable architecture. Int J Mod Phys B 23:1002–1008. https://doi.org/10.1142/S0217979209060373

    Article  CAS  Google Scholar 

  75. Čapek J, Vojtěch D, Oborná A (2015) Microstructural and mechanical properties of biodegradable iron foam prepared by powder metallurgy. Mater Des 83:468–482. https://doi.org/10.1016/j.matdes.2015.06.022

    Article  CAS  Google Scholar 

  76. Čapek J, Vojtěch D (2014) Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy. Mater Sci Eng C 43:494–501. https://doi.org/10.1016/j.msec.2014.06.046

    Article  CAS  Google Scholar 

  77. Zivic F, Grujovic N, Pellicer E, Sort J, Mirovic S, Adamovic D, Vulovic M (2017) Biodegradable Metals as Biomaterials for Clinical Practice: Iron-Based Materials. In: Zivic F, Affatato S, Trajanovic M, Schnabelrauch M, Grujovic N, Choy K (eds) Biomaterials in Clinical Practice. Springer, Cham, pp 225–280. https://doi.org/10.1007/978-3-319-68025-5_9

  78. He J, He FL, Li DW, Liu YL, Liu YY, Ye YJ, Yin DC (2016) Advances in Fe-based biodegradable metallic material. RSC Adv 6:112819–112838. https://doi.org/10.1039/C6RA20594A

    Article  CAS  Google Scholar 

  79. Oriňak A, Oriňaková R, Orságová Králová Z, Turoňová Morovská A, Kupková M, Hrubovčáková M, Radoňák J, Džunda R (2014) Sintered metallic foams for biodegradable bone replacement. J Porous Mater 21:131–140. https://doi.org/10.1007/s10934-013-9757-4

    Article  CAS  Google Scholar 

  80. Oriňaková R, Oriňak A, Markušová-Bučková L, Giretová M, Medvecký L, Labbanczová E, Kupková M, Hrubovčáková M, Koval K (2013) Iron based degradable foam structures for potential orthopedic application. Int J Electrochem Sci 8:12451–12465

    Google Scholar 

  81. Haverová L, Oriňaková R, Oriňak A, Gorejová R, Baláž M, Vanýsek P, Kupková M, Hrubovčáková M, Mudroň P, Radoňák J, Orságová Králová Z, Morovská Turoňová A (2018) An in vitro corrosion study of open cell Iron structures with PEG coating for bone replacement applications. Metals 8:499. https://doi.org/10.3390/met8070499

    Article  CAS  Google Scholar 

  82. Ray S, Thormann U, Eichelroth M, Budak M, Biehl C, Rupp M, Sommer U, El Khassawna T, Alagboso FI, Kampschulte M, Rohnke M, Henß A, Peppler K, Linke V, Quadbeck P, Voigt A, Stenger F, Karl D, Schnettler R, Heiss C, Lips KS, Alt V (2018) Strontium and bisphosphonate coated iron foam scaffolds for osteoporotic fracture defect healing. Biomaterials 157:1–16. https://doi.org/10.1016/j.biomaterials.2017.11.049

    Article  CAS  Google Scholar 

  83. Quadbeck P, Stephani G, Kümmel K, Adler J, Standke G (2007) Synthesis and properties of open-celled metal foams. Mater Sci Forum 534–536:1005–1008. https://doi.org/10.4028/www.scientific.net/msf.534-536.1005

    Article  Google Scholar 

  84. Hrubovčáková M, Kupková M, Džupon M, Giretová M, Medvecký L, Džunda R (2017) Biodegradable polylactic acid and polylactic acid/hydroxyapatite coated iron foams for bone replacement materials. Int J Electrochem Sci 12:11122–11136. https://doi.org/10.20964/2017.12.53

  85. Gorejová R, Oriňaková R, Orságová Králová Z, Baláž M, Kupková M, Hrubovčáková M, Haverová L, Džupon M, Oriňak A, Kaľavský F, Kovaľ K (2020) In vitro corrosion behavior of biodegradable iron foams with polymeric coating. Materials 13:184. https://doi.org/10.3390/ma13010184

    Article  CAS  Google Scholar 

  86. Quadbeck P, Kümmel K, Hauser R, Standke G, Adler J, Stephani G, Kieback B (2011) Structural and material design of open-cell powder metallurgical foams. Adv Eng Mater 13:1024–1030. https://doi.org/10.1002/adem.201100023

    Article  CAS  Google Scholar 

  87. Feng Y, Fornell J, Zhang H, Solsona P, Baró MD, Suriñach S, Pellicer E, Sort J (2018) Synthesis of α-Fe2O3 and Fe-Mn oxide foams with highly tunable magnetic properties by the replication method from polyurethane templates. Materials 11:280. https://doi.org/10.3390/ma11020280

    Article  CAS  Google Scholar 

  88. Oriňaková R, Gorejová R, Orságová Králová Z, Haverová L, Oriňak A, Maskaľová I, Kupková M, Džupon M, Baláž M, Hrubovčáková M, Sopčák T, Zubrik A, Oriňak M (2020) Evaluation of Mechanical Properties and Hemocompatibility of Open Cell Iron Foams with Polyethylene Glycol Coating. Appl Surf Sci 505. https://doi.org/10.1016/j.apsusc.2019.144634

  89. Oriňaková R, Gorejová R, Petráková M, Orságová Králová Z, Oriňak A, Kupková M, Hrubovčáková M, Podobová M, Baláž M, Smith RM (2020) Degradation performance of open-cell biomaterials from phosphated carbonyl iron powder with PEG coating. Materials 13:4134. https://doi.org/10.3390/ma13184134

    Article  CAS  Google Scholar 

  90. Hrubovčáková M, Džupon M, Kupková M, Oriňaková R (2020) Biodegradable iron-based foams for potential bone replacement material. Defect Diffus Forum 405:151–156. https://doi.org/10.4028/www.scientific.net/DDF.405.151

    Article  Google Scholar 

  91. Kupková M, Kupka M, Oriňaková R, Gorejová R (2020) Microstructure, stiffness and corrosion of bare and phosphated specimens made by sintering of structured iron-iron oxide spheres. Defect Diffus Forum 405:411–416. https://doi.org/10.4028/www.scientific.net/DDF.405.411

    Article  Google Scholar 

  92. Jee CSY, Özgüven N, Guo ZX, Evans JRG (2000) Preparation of high porosity metal foams. Metall Mater Trans B Process Metall Mater Process Sci 31:1345–1352. https://doi.org/10.1007/s11663-000-0021-3

    Article  Google Scholar 

  93. Čapek J, Msallamová Š, Jablonská E, Lipov J, Vojtěch D (2017) A novel high-strength and highly corrosive biodegradable Fe-Pd alloy: structural, mechanical and in vitro corrosion and cytotoxicity study. Mater Sci Eng C 79:550–562. https://doi.org/10.1016/j.msec.2017.05.100

    Article  CAS  Google Scholar 

  94. Zhang Q, Peng C (2015) Degradable porous Fe-35wt.%Mn produced via powder sintering from NH4HCO3 porogen. Mater Chem Phys 163:394–401. https://doi.org/10.1016/j.matchemphys.2015.07.056

    Article  CAS  Google Scholar 

  95. Heiden M, Nauman E, Stanciu L (2017) Bioresorbable Fe–Mn and Fe–Mn–HA Materials for Orthopedic Implantation: Enhancing Degradation through Porosity Control. Adv Healthc Mater 6:1700120. https://doi.org/10.1002/adhm.201700120

    Article  CAS  Google Scholar 

  96. Murakami T, Ohara K, Narushima T, Ouchi C (2007) Development of a new method for manufacturing iron foam using gases generated by reduction of iron oxide. Mater Trans 48:2937–2944. https://doi.org/10.2320/matertrans.MRA2007127

    Article  CAS  Google Scholar 

  97. Carluccio D, Demir AG, Caprio L, Previtali B, Bermingham MJ, Dargusch MS (2019) The influence of laser processing parameters on the densification and surface morphology of pure Fe and Fe-35Mn scaffolds produced by selective laser melting. J Manuf Process 40:113–121. https://doi.org/10.1016/j.jmapro.2019.03.018

    Article  Google Scholar 

  98. Carluccio D, Xu C, Venezuela J, Cao Y, Kent D, Bermingham M, Demir AG, Previtali B, Ye Q, Dargusch M (2020) Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications. Acta Biomater 103:346–360. https://doi.org/10.1016/j.actbio.2019.12.018

    Article  CAS  Google Scholar 

  99. Li Y, Jahr H, Pavanram P, Bobbert FSL, Puggi U, Zhang XY, Pouran B, Leeflang MA, Weinans H, Zhou J, Zadpoor AA (2019) Additively manufactured functionally graded biodegradable porous iron. Acta Biomater 96:646–661. https://doi.org/10.1016/j.actbio.2019.07.013

    Article  CAS  Google Scholar 

  100. Li Y, Jahr H, Lietaert K, Pavanram P, Yilmaz A, Fockaert LI, Leeflang MA, Pouran B, Gonzalez-Garcia Y, Weinans H, Mol JMC, Zhou J, Zadpoor AA (2018) Additively manufactured biodegradable porous iron. Acta Biomater 77:380–393. https://doi.org/10.1016/j.actbio.2018.07.011

    Article  CAS  Google Scholar 

  101. Yang C, Huan Z, Wang X, Wu C, Chang J (2018) 3D Printed Fe Scaffolds with HA nanocoating for bone regeneration. ACS Biomater Sci Eng 4:608–616. https://doi.org/10.1021/acsbiomaterials.7b00885

    Article  CAS  Google Scholar 

  102. Chou DT, Wells D, Hong D, Lee B, Kuhn H, Kumta PN (2013) Novel processing of Iron-Manganese Alloy-based Biomaterials by Inkjet 3D printing. Acta Biomater 9:8593–8603. https://doi.org/10.1016/j.actbio.2013.04.016

    Article  CAS  Google Scholar 

  103. Sharma P, Pandey PM (2018) Morphological and mechanical characterization of topologically ordered open cell porous iron foam fabricated using 3D printing and pressureless microwave sintering. Mater Des 160:442–454. https://doi.org/10.1016/j.matdes.2018.09.029

    Article  CAS  Google Scholar 

  104. Sharma P, Pandey PM (2019) Corrosion behaviour of the porous iron scaffold in simulated body fluid for biodegradable implant application. Mater Sci Eng C 99:838–852. https://doi.org/10.1016/j.msec.2019.01.114

    Article  CAS  Google Scholar 

  105. Sharma P, Pandey PM (2018) A novel manufacturing route for the fabrication of topologically-ordered open-cell porous iron scaffold. Mater Lett 222:160–163. https://doi.org/10.1016/j.matlet.2018.03.206

    Article  CAS  Google Scholar 

  106. Zhao L, Zhang Z, Song Y, Liu S, Qi Y, Wang X, Wang Q, Cui C (2016) Mechanical properties and in vitro biodegradation of newly developed porous Zn scaffolds for biomedical applications. Mater Des 108:136–144. https://doi.org/10.1016/j.matdes.2016.06.080

    Article  CAS  Google Scholar 

  107. Hou Y, Jia G, Yue R, Chen C, Pei J, Zhang H, Huang H, Xiong M, Yuan G (2018) Synthesis of biodegradable Zn-based scaffolds using NaCl templates: relationship between porosity, compressive properties and degradation behavior. Mater Charact 137:162–169. https://doi.org/10.1016/j.matchar.2018.01.033

    Article  CAS  Google Scholar 

  108. Cockerill I, Su Y, Bitten R, Cloarec B, Aouadi S, Zhu D, Young ML (2020) Salt preform texturing of absorbable Zn substrates for bone-implant applications. JOM 72:1902–1909. https://doi.org/10.1007/s11837-019-03971-1

    Article  CAS  Google Scholar 

  109. Cockerill I, Su Y, Sinha S, Qin YX, Zheng Y, Young ML, Zhu D (2020) Porous zinc scaffolds for bone tissue engineering applications: A novel additive manufacturing and casting approach. Mater Sci Eng C 110. https://doi.org/10.1016/j.msec.2020.110738

  110. Kováčik J, Simančík F (2004) Comparison of zinc and aluminium foam behaviour. Kovove Mater 42:79–90

    Google Scholar 

  111. Chethan A, Garcia-Moreno F, Wanderka N, Murty BS, Banhart J (2011) Influence of oxides on the stability of zinc foam. J Mater Sci 46:7806–7814. https://doi.org/10.1007/s10853-011-5761-8

    Article  CAS  Google Scholar 

  112. Sadighikia S, Abdolhosseinzadeh S, Asgharzadeh H (2015) Production of high porosity Zn foams by powder metallurgy method. Powder Metall 58:61–66. https://doi.org/10.1179/1743290114Y.0000000109

    Article  CAS  Google Scholar 

  113. Yang D, Chen J, Chen W, Wang L, Wang H, Jiang J, Ma A (2017) Fabrication of cellular Zn-Mg alloy foam by gas release reaction via powder metallurgical approach. J Mater Sci Technol 33:1141–1146. https://doi.org/10.1016/j.jmst.2017.03.019

    Article  CAS  Google Scholar 

  114. Li Y, Pavanram P, Zhou J, Lietaert K, Bobbert FSL, Kubo Y, Leeflang MA, Jahr H, Zadpoor AA (2020) Additively manufactured functionally graded biodegradable porous zinc. Biomater Sci 8:2404–2419. https://doi.org/10.1039/c9bm01904a

    Article  CAS  Google Scholar 

  115. Wen P, Qin Y, Chen Y, Voshage M, Jauer L, Poprawe R, Schleifenbaum JH (2019) Laser additive manufacturing of Zn porous scaffolds: Shielding gas flow, surface quality and densification. J Mater Sci Technol 35:368–376. https://doi.org/10.1016/j.jmst.2018.09.065

    Article  Google Scholar 

  116. Qin Y, Wen P, Voshage M, Chen Y, Schückler PG, Jauer L, Xia D, Guo H, Zheng Y, Schleifenbaum JH (2019) Additive manufacturing of biodegradable Zn-xWE43 porous scaffolds: Formation quality, microstructure and mechanical properties. Mater Des 181. https://doi.org/10.1016/j.matdes.2019.107937

  117. Li Y, Pavanram P, Zhou J, Lietaert K, Taheri P, Li W, San H, Leeflang MA, Mol JMC, Jahr H, Zadpoor AA (2020) Additively manufactured biodegradable porous zinc. Acta Biomater 101:609–623. https://doi.org/10.1016/j.actbio.2019.10.034

    Article  CAS  Google Scholar 

  118. Qin Y, Wen P, Guo H, Xia D, Zheng Y, Jauer L, Poprawe R, Voshage M, Schleifenbaum JH (2019) Additive manufacturing of biodegradable metals: current research status and future perspectives. Acta Biomater 15(98):3–22. https://doi.org/10.1016/j.actbio.2019.04.046

    Article  CAS  Google Scholar 

  119. Liu J, Zhang L, Liu S, Han Z, Dong Z (2020) Effect of Si content on microstructure and compressive properties of open-cell Mg composite foams reinforced by in-situ Mg2Si compounds. Mater Charact 159. https://doi.org/10.1016/j.matchar.2019.110045

  120. Jiang D, Ning F, Wang Y (2021) Additive manufacturing of biodegradable iron-based particle reinforced polylactic acid composite scaffolds for tissue engineering. J Mater Process Technol 289. https://doi.org/10.1016/j.jmatprotec.2020.116952

  121. Sotoudehbagha P, Sheibani S, Khakbiz M, Ebrahimi-Barough S, Hermawan H (2018) Novel antibacterial biodegradable Fe-Mn-Ag alloys produced by mechanical alloying. Mater Sci Eng C 88:88–94. https://doi.org/10.1016/j.msec.2018.03.005

    Article  CAS  Google Scholar 

  122. Tie D, Feyerabend F, Müller WD et al (2013) Antibacterial biodegradable Mg-Ag alloys. Euro Cells Mater 25:284–98. https://doi.org/10.22203/ecm.v025a20

  123. Aghion E, Yered T, Perez Y, Gueta Y (2010) The prospects of carrying and releasing drugs via biodegradable magnesium foam. Adv Eng Mater 12(8):B374–B379. https://doi.org/10.1002/adem.200980044

    Article  CAS  Google Scholar 

  124. Liu G, He Y, Liu P, Chen Z, Chen X, Wan L et al (2020) Development of bioimplants with 2D, 3D, and 4D additive manufacturing materials. Engineering 6(11):1232–1243. https://doi.org/10.1016/j.eng.2020.04.015

    Article  Google Scholar 

  125. Lee AY, An J, Chua CK (2017) Two-way 4D printing: a review on the reversibility of 3D-printed shape memory materials. Engineering 3(5):663–674. https://doi.org/10.1016/J.ENG.2017.05.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency (projects APVV-16-0029 and APVV-20-0278) and by Internal Research Grant System of Faculty of Science of Pavol Jozef Šafárik University (project vvgs-pf-2021-1773).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renáta Oriňaková.

Ethics declarations

Conflicts of interest

The authors have declared that no conflicts of interest exist.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oriňaková, R., Gorejová, R., Králová, Z.O. et al. Novel trends and recent progress on preparation methods of biodegradable metallic foams for biomedicine: a review. J Mater Sci 56, 13925–13963 (2021). https://doi.org/10.1007/s10853-021-06163-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06163-y

Navigation