Skip to main content

Advertisement

Log in

Compressive and Corrosion Properties of Lotus-Type Porous Mg-Mn Alloys Fabricated by Unidirectional Solidification

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Lotus-type porous Mg-Mn alloys were fabricated by solid-gas eutectic unidirectional solidification (the Gasar process) by controlling and optimizing the process parameters. The microstructures, compressive properties and corrosion properties in a simulated body fluid solution were investigated. Porous pure Mg was prepared with a preferentially oriented (11\( \bar{2} \)2) plane, whereas the Mg-2 wt pct Mn alloy showed a preferentially oriented (10\( \bar{1} \)3) plane. Mn addition refined the grains, improved the Mn precipitates, activated the {10\( \bar{1} \)2} twin at the end of the pores and increased the compressive strength from 64 MPa for pure Mg to 74 MPa for 1 wt pctMn and 80 MPa for 2 wt pct Mn. Electrochemical tests showed that 2 wt pct Mn addition could decrease the corrosion current from 1.84 × 10−3 to 4.22 × 10−4 A cm−2. Immersion tests suggest that 2 wt pct Mn addition reduced the sample mass loss, which indicated a better corrosion performance, and exhibited a smaller decrease in compressive strength compared with that of the porous pure Mg. This work shows that the Gasar technique can be a promising fabrication method to prepare lotus-type porous Mg-Mn alloys which are more attractive for application in degradable biomaterials engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.C. Xu, Y. Yang, X.D. Peng, J.F. Song, F.S. Pan: J. Magnes. Alloy., 2019, vol. 7, pp. 536-554. https://doi.org/10.1016/j.jma.2019.08.001

    Article  CAS  Google Scholar 

  2. J. Liu, Z.S. Cui: J. Mater. Process. Technol., 2009, vol. 209, pp. 5871-5880. https://doi.org/10.1016/j.jmatprotec.2009.06.015

    Article  CAS  Google Scholar 

  3. A.A. Luo: J. Magnes. Alloy., 2013, vol. 1, pp. 2-22. https://doi.org/10.1016/j.jma.2013.02.002

    Article  CAS  Google Scholar 

  4. E.Karakulak: J. Magnes. Alloy., 2019, vol. 7, pp. 355-369. https://doi.org/10.1016/j.jma.2019.05.001

    Article  CAS  Google Scholar 

  5. X.N. Gu, Y.F. Zheng: Front. Mater. Sci. China, 2010 vol. 4, pp. 111–115. https://doi.org/10.1007/s11706-010-0024-1

    Article  Google Scholar 

  6. F.Wittea, J. Fischera, J. Nellesenb, H.A. Crostackb, V. Kaesec,A. Pischd, F. Beckmanne, H. Windhagena: Biomaterials, 2006, vol. 27, pp. 1013-1018. https://doi.org/10.1016/j.biomaterials.2005.07.037

    Article  CAS  Google Scholar 

  7. N.E.L. Saris, E. Mervaala, H. Karppanen, J.A.Khawaja, A.Lewenstam: Clin. Chim. Acta, 2000, vol. 294, pp. 1-26. https://doi.org/10.1016/S0009-8981(99)00258-2

    Article  CAS  Google Scholar 

  8. M. P. Staiger, A.M. Pietak, J. Huadmai, G.Dias: Biomaterials, 2006, vol. 27, pp. 1728-1734. https://doi.org/10.1016/j.biomaterials.2005.10.003

    Article  CAS  Google Scholar 

  9. A. Vahid, P. Hodgson, Y.C. Li: J. Alloy. Compd., 2017, vol. 724, pp. 176-186. https://doi.org/10.1016/j.jallcom.2017.07.004

    Article  CAS  Google Scholar 

  10. R. D. Carpenter, B. S. Klosterhoff, F. B. Torstrick, K.T. Foley, J.K. Burkus, C.S.D. Lee, K.Gall, R.E.Guldberg, D.L. Safranski: J. Mech. Behav. Biomed., 2018, vol. 80, pp. 68-76. doi: 10.1016/j.jmbbm.2018.01.017

    Article  CAS  Google Scholar 

  11. B.R. Levine, S. Sporer, R.A. Poggie, C.J. DellaValle and J.J. Jacob: Biomaterials, 2006, vol. 27, pp. 4671-4681. doi:10.1016/j.biomaterials.2006.04.041.

    Article  CAS  Google Scholar 

  12. G.Z. Jia, Y. Hou, C.X. Chen, J.L. Niu, H. Zhang, M.P. Xiong, G.Y. Yuan: Mater. Des. 2018, vol. 140, pp. 106-13. doi: 10.1016/j.matdes.2017.11.064.

    Article  CAS  Google Scholar 

  13. Q.L. Loh, C. Choong :Tissue Eng. Part B 2013, vol. 19, pp. 485-502. https://doi.org/10.1089/ten.teb.2012.0437

    Article  CAS  Google Scholar 

  14. H. Seki, M. Tane, M. Otsuka and H. Nakajima: J. Mater. Res., 2007, vol. 22, pp. 1331-1338. https://doi.org/10.1557/JMR.2007.0164

    Article  CAS  Google Scholar 

  15. M.H. Kang, H. Lee, T.S. Jang, Y.J. Seong, H.E. Kim, Y.H. Koh, J. Song, H.D. Jung: Acta Biomaterialia, 2019, vol. 84, pp. 453-467. https://doi.org/10.1016/j.actbio.2018.11.045

    Article  CAS  Google Scholar 

  16. V.I. Shapovalov: U.S. Patent, No. 5181549. January 26, 1993.

  17. H.W Zhang, Y.X. Li, and Y. Liu: Acta. Metall. Sin., 2007, vol. 43, pp. 113-118.

    CAS  Google Scholar 

  18. Y. Liu, Y.X. Li, R.F. Liu,R. Zhou, Y.H. Jiang, Z.H. Li: Acta. Metall. Sin. 2010, vol.46, pp.129-134. https://doi.org/10.3724/SP.J.1037.2009.00527

    Article  CAS  Google Scholar 

  19. Y. Liu, Y.X. Li, Y.X, H.W. Zhang, J. Wan: Rare Metal Mater. Eng., 2005, vol. 34, pp. 1128-1130.

    CAS  Google Scholar 

  20. G.R. Jiang, Y.X. Li and Y. Liu: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 88-95. https://doi.org/10.1016/S1003-6326(11)60682-1

    Article  CAS  Google Scholar 

  21. Y. Liu, Y.X. Li, J. Wan, H.W. Zhang: Mater. Sci. Eng. A, 2005, vol. 402, pp. 47-54. doi: 10.1016/j.msea.2005.03.107

    Article  CAS  Google Scholar 

  22. L.T. Chen, H.W Zhang, Y. Liu, Y.X. Li. Acta. Metall. Sin., 2012, vol. 48: 323-333. https://doi.org/10.3724/SP.J.1037.2011.00703

    Article  CAS  Google Scholar 

  23. S.K. Hyun, M. Uchikoshi, K. Mimura, M. Isshiki, H. Nakajima: Mater. Trans., 2010, vol. 51, pp. 2076-2079. https://doi.org/10.2320/matertrans.M2010219

    Article  CAS  Google Scholar 

  24. M. Tane, T. Mayama,A. Odaa, H. Nakajima: Acta Metall., 2015, vol. 84, pp. 80-94. https://doi.org/10.1016/j.actamat.2014.10.024

    Article  CAS  Google Scholar 

  25. Ashby M F, Evans A G:Metal Foams: A Design Guide, San Diego, Butterworth-Heinemann, 2000: 1

    Google Scholar 

  26. K. Alvarez, K. Sato, S.K. Hyun, H. Nakajim: Materials Science and Engineering C, 2008, vol. 28, pp. 44–50. https://doi.org/10.1016/j.msec.2007.01.010

    Article  CAS  Google Scholar 

  27. X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Liu, Y.X. Li: Mater. Lett., 2010, vol. 64, pp. 1871-1974. https://doi.org/10.1016/j.matlet.2010.06.015

    Article  CAS  Google Scholar 

  28. H. Hoshiyama, T. Ikeda, H. Nakajima:High Temperature Materials and Processes, 2007, Vol. 26, pp. 303-316. https://doi.org/10.1515/HTMP.2007.26.4.303

    Article  CAS  Google Scholar 

  29. C. Park, S. R. Nutt: Mat. Res. Soc. Symp. Proc. 1998, Vol. 521, pp. 315-320. https://doi.org/10.1557/proc-521-315

    Article  CAS  Google Scholar 

  30. X.N. Gu, Y.F. Zheng, Y. Cheng, S.P. Zhong, T.F. Xi: Biomaterials, 2009, vol. 30, pp. 484-498. https://doi.org/10.1016/j.biomaterials.2008.10.021

    Article  CAS  Google Scholar 

  31. N. Li, Y.F. Zheng: J. Mater. Sci. Technol., 2013, vol. 29, pp. 489-502. https://doi.org/10.1016/j.jmst.2013.02.005

    Article  CAS  Google Scholar 

  32. Y. He, Y.X. Li, H.W. Zhang, Y. Liu: J. Mater. Process Tech., 2017, vol. 245, pp. 106-114. https://doi.org/10.1016/j.jmatprotec.2017.02.024

    Article  Google Scholar 

  33. Kokubo T, Takadama H: Biomaterials, 2006, vol. 27, pp. 2907-2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  Google Scholar 

  34. L. Gibson, M. Ashby: Ceellar Solids: Structure and Properties, 2nd ed. Cambridge University Press, Cambridge, 1997.

    Book  Google Scholar 

  35. N. Huber,R.N. Viswanath,N. Mameka, J.Markmann, J.Weißmüller: Acta Materialia, 2014, vol. 67 pp. 252-265. https://doi.org/10.1016/j.actamat.2013.12.003

    Article  CAS  Google Scholar 

  36. E. W. Kelley, W.F. Hosford: Trans. Met. Soc. AIME, 1968, vol. 242, pp. 5-13.

    CAS  Google Scholar 

  37. S.V.S.N. Murty, N. Nayan, R. Madhavan, S.C. Sharma, K.M. George, S. Suwas: J. Mater. Eng. Perform., 2015, vol. 24, pp. 2091-2098. https://doi.org/10.1007/s11665-015-1459-4

    Article  CAS  Google Scholar 

  38. Y.F. Luo, Y.L. Deng, L. Guan, L. Ye, X.B. Guo, A. Luo: Corrosion Science, 2020, vol. 164, 108338 doi: 10.1016/j.corsci.2019.108338

    Article  CAS  Google Scholar 

  39. P. Metalnikov, G.B. Hamu, Y. Templeman, K.S. Shin, L. Meshi: Materials Characterization, 2018, vol. 145, pp. 101-115. https://doi.org/10.1016/j.matchar.2018.08.033

    Article  CAS  Google Scholar 

  40. K.D. Ralston, N. Birbilis: Corrosion, 2010, vol. 66 (7): 075005. doi:10.5006/1.3462912

    Article  Google Scholar 

  41. G.R. Argade, S.K. Panigrahi, R.S. Mishra: Corrosion Science, 2012, vol. 58, pp. 145-151. https://doi.org/10.1016/j.corsci.2012.01.021

    Article  CAS  Google Scholar 

  42. D.S. Gandel, M.A. Easton, M.A. Gibson, N. Birbilis: Corrosion, 2013, vol. 69, pp. 744-751. http://dx.doi.org/10.5006/0827

    Article  CAS  Google Scholar 

  43. L.P. Xu, E.L, Zhang, D.S. Yin, S.Y. Zeng, K. Yang: J. Mater. Sci. 2008, 19(3):1017-1025. doi: 10.1007/s10856-007-3219-y

    Article  CAS  Google Scholar 

  44. G.L. Song, R. Mishra, Z.Q. Xu: Electrochem. Commun. 2010, vol. 12, pp. 1009-1012. https://doi.org/10.1016/j.elecom.2010.05.011

    Article  CAS  Google Scholar 

  45. H.M. Jia, X.H. Feng, Y.S. Yang: J. Mater. Sci. Technol., 2018, vol.34, pp .1229-1235. https://doi.org/10.1016/j.jmst.2017.06.009

    Article  Google Scholar 

  46. K. Hagihara, M. Okubo, M. Yamasaki, T. Nakano: Corros. Sci., 2016, vol. 109, pp. 68-85. https://doi.org/10.1016/j.corsci.2016.03.019

    Article  CAS  Google Scholar 

  47. B.Q. Fu, W. Liu, Z.L. Li: Appl. Surf. Sci., 2009, vol. 255, pp. 9348-9357. https://doi.org/10.1016/j.apsusc.2009.07.034

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the National Science Foundation of China (No. 51771101)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 23, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Liu, Y., Zhang, H. et al. Compressive and Corrosion Properties of Lotus-Type Porous Mg-Mn Alloys Fabricated by Unidirectional Solidification. Metall Mater Trans A 51, 3238–3247 (2020). https://doi.org/10.1007/s11661-020-05732-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05732-1

Navigation