Skip to main content
Log in

Non-integer temporal exponents in trans-interface diffusion-controlled coarsening

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The kinetics of γ′-type (Ni3X) precipitate growth and solute depletion in Ni–Al, Ni–Ga, Ni–Ge, Ni–Si, Ni–Ti and Ni–Al–Cr alloys is successfully predicted by the trans-interface diffusion-controlled theory of coarsening using non-integer temporal exponents, n, satisfying 2 ≤ n ≤ 3, which are obtained from analyses of particle size distributions (PSDs). The origin of non-integer n is concentration-dependent diffusion through the γ/γ′ interface. The literature on diffusion of Al and Ni in Ni3Al is specifically examined. It is shown unequivocally that the concentration-dependent diffusion of Al can account semi-quantitatively for the value of n that successfully describes the PSDs and kinetics of coarsening of the γ′ precipitates. There is no need to invoke a particle size-dependent γ/γ′ interface width, as was done in prior work. It is argued that existing theory and computational modeling of coarsening in systems with highly disparate diffusion mobilities in both phases do not correctly represent the mobilities in the matrix, precipitate, and interface in Ni–Al alloys. These theories predict temporal exponents satisfying 3 ≤ n ≤ 4, for which there is no experimental support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Notes

  1. The factor of 3 in the exponential term in Eq. (4) was mistakenly omitted in [3537], but was included in all fitting of experimental PSDs.

References

  1. Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50

    Article  Google Scholar 

  2. Wagner C (1963) Theorie der altering von niederschlagen durch ümlosen. Z Elektrochem 65:581–591

    Google Scholar 

  3. Asimow R (1963) Clustering kinetics in binary alloys. Acta Metall 11:72–73

    Article  Google Scholar 

  4. Sarian S, Weart HW (1966) Kinetics of coarsening of spherical particles in a liquid matrix. J Appl Phys 37:1675–1681

    Article  Google Scholar 

  5. Baldan A (2002) Review-progress in Ostwald ripening theories and their applications to nickel-base superalloys–part I: Ostwald ripening theories. J Mater Sci 37:2171–2202

    Article  Google Scholar 

  6. Ardell AJ (1972) Effect of volume fraction on particle coarsening: theoretical considerations. Acta Metall 20:61–71

    Article  Google Scholar 

  7. Davies CKL, Nash P, Stevens RN (1980) Effect of volume fraction of precipitate on Ostwald ripening. Acta Metall 28:179–189

    Article  Google Scholar 

  8. Marqusee JA, Ross J (1984) Theory of Ostwald ripening: competitive growth and its dependence on volume fraction. J Chem Phys 80:536–543

    Article  Google Scholar 

  9. Brailsford AD, Wynblatt P (1979) Dependence of Ostwald ripening kinetics on particle volume fraction. Acta Metall 27:489–497

    Article  Google Scholar 

  10. Voorhees PW, Glicksman ME (1984) Solution to the multi-particle diffusion problem with applications to Ostwald ripening–II. Computer simulations. Acta Metall 32:2013–2030

    Article  Google Scholar 

  11. Wang KG, Glicksman ME, Rajan K (2005) Length scales in phase coarsening: theory, simulation, and experiment. Comput Mater Sci 34:235–253

    Article  Google Scholar 

  12. Svoboda J, Fischer FD (2014) Generalization of the Lifshitz-Slyozov-Wagner coarsening theory to non-dilute multi-component systems. Acta Mater 79:304–314

    Article  Google Scholar 

  13. Streitenberger P (2013) Analytical description of phase coarsening at high volume fractions. Acta Mater 61:5026–5035

    Article  Google Scholar 

  14. Ardell AJ, Ozolins V (2005) Trans-interface diffusion-controlled coarsening. Nature Mater 2005:309–316

    Article  Google Scholar 

  15. Chellman DJ, Ardell AJ (1974) Coarsening of γ′ precipitates at large volume fractions. Acta Metall 22:577–588

    Article  Google Scholar 

  16. Kim D, Ardell AJ (2004) Coarsening behavior of Ni3Ga precipitates in Ni-Ga alloys: dependence of microstructure and kinetics on volume fraction. Metall Mater Trans 35A:3063–3069

    Article  Google Scholar 

  17. Kim DM, Ardell AJ (2003) Coarsening of Ni3Ge in binary Ni-Ge alloys: microstructures and volume fraction dependence of kinetics. Acta Mater 51:4073–4082

    Article  Google Scholar 

  18. Meshkinpour M, Ardell AJ (1994) Role of volume fraction in the coarsening of Ni3Si precipitates in binary Ni-Si alloys. Mater Sci Eng A185:153–163

    Article  Google Scholar 

  19. Cho J-H, Ardell AJ (1997) Coarsening of Ni3Si precipitates in binary Ni-Si alloys at intermediate to large volume fractions. Acta Mater 45:1393–1400

    Article  Google Scholar 

  20. Cho J-H, Ardell AJ (1998) Coarsening of Ni3Si precipitates at volume fractions from 0.03 to 0.30. Acta Mater 46:5907–5916

    Article  Google Scholar 

  21. Kim DM, Ardell AJ (2000) The volume-fraction dependence of Ni3Ti coarsening kinetics–new evidence of anomalous behavior. Scr Mater 43:381–384

    Article  Google Scholar 

  22. Lund AC, Voorhees PW (2002) The effects of elastic stress on coarsening in the Ni-Al system. Acta Mater 50:2085–2098

    Article  Google Scholar 

  23. Sauthoff G, Kahlweit M (1969) Precipitation in Ni-Si alloys. Acta Metall 17:1501–1509

    Article  Google Scholar 

  24. Harada H, Ishida A, Murakami Y, Bhadeshia H, Yamazaki M (1993) Atom-probe microanalysis of a nickel-base single-crystal superalloy. Appl Surf Sci 67:299–304

    Article  Google Scholar 

  25. Blavette D, Danoix F, Cadel E, Geandier G, Menand A (1999) The utility of tomographic atom probe in interface observation and analysis. J Phys IV France 9:113–121

    Article  Google Scholar 

  26. Sudbrack CK, Isheim D, Noebe RD, Jacobson NS, Seidman DN (2004) The influence of tungsten on the chemical composition of a temporally evolving nanostructure of a model Ni-Al-Cr superalloy. Micros Microanal 10:355–365

    Article  Google Scholar 

  27. Srinivasan R, Banerjee R, Hwang JY, Viswanathan GB, Tiley J, Dimiduk DM, Fraser HL (2009) Atomic scale structure and chemical composition across order-disorder interfaces. Phys Rev Lett 102:086101

    Article  Google Scholar 

  28. Meher S, Rojhirunsakool T, Hwang JY, Nag S, Tiley J, Banerjee R (2013) Coarsening behaviour of gamma prime precipitates and concurrent transitions in the interface width in Ni-14 at.% Al-7 at.% Cr. Philos Magn Lett 93:521–530

    Article  Google Scholar 

  29. Plotnikov EY, Mao ZG, Noebe RD, Seidman DN (2014) Temporal evolution of the γ(fcc)/γ′(L12) interfacial width in binary Ni-Al alloys. Scr Mater 70:51–54

    Article  Google Scholar 

  30. Mishin Y (2004) Atomistic modeling of the γ and γ′-phases of the Ni-Al system. Acta Mater 52:1451–1467

    Article  Google Scholar 

  31. Ikeda T, Almazouzi A, Numakura H, Koiwa M, Sprengel W, Nakajima H (1998) Single-phase interdiffusion in Ni3Al. Acta Mater 46:5369–5376

    Article  Google Scholar 

  32. Fujiwara K, Horita Z (2002) Measurement of intrinsic diffusion coefficients of Al and Ni in Ni3Al using Ni/NiAl diffusion couples. Acta Mater 50:1571–1579

    Article  Google Scholar 

  33. Watanabe M, Horita Z, Sano T, Nemoto M (1994) Electron microscopy study of Ni/Ni3Al diffusion-couple interface–II. Diffusivity measurement. Acta Metall Mater 42:3389–3396

    Article  Google Scholar 

  34. Janssen MMP (1973) Diffusion in nickel-rich part of Ni-Al system at 1000 to 1300 °C; Ni3Al layer growth, diffusion-coefficients, and interface concentrations. Metall Trans 4:1623–1633

    Google Scholar 

  35. Ardell AJ, Kim D, Ozolins V (2006) Ripening of L12 Ni3Ti precipitates in the framework of the trans-interface diffusion-controlled theory of particle coarsening. Z Metallkde 97:295–302

    Article  Google Scholar 

  36. Ardell AJ (2010) Quantitative predictions of the trans-interface diffusion-controlled theory of particle coarsening. Acta Mater 53:4325–4331

    Article  Google Scholar 

  37. Ardell AJ (2011) A1-L12 interfacial free energies from data on coarsening in five binary Ni alloys, informed by thermodynamic phase diagram assessments. J Mater Sci 46:4832–4849. doi:10.1007/s10853-011-5395-x

    Article  Google Scholar 

  38. Ardell AJ (2013) Trans-interface-diffusion-controlled coarsening in ternary alloys. Acta Mater 61:7749–7754

    Article  Google Scholar 

  39. Ardell AJ (2013) Trans-interface-diffusion-controlled coarsening of γ′ precipitates in ternary Ni-Al-Cr alloys. Acta Mater 61:7828–7840

    Article  Google Scholar 

  40. Ma Y, Ardell AJ (2007) Coarsening of γ (Ni-Al solid solution) precipitates in a γ′ (Ni3Al) matrix. Acta Mater 55:4419–4427

    Article  Google Scholar 

  41. Ma Y, Ardell AJ (2012) Coarsening of Ni-Ge precipitates in “inverse” Ni3Ge alloys. Mater Sci Eng A550:66–75

    Google Scholar 

  42. Tsumuraya K, Miyata Y (1983) Coarsening models incorporating both diffusion geometry and volume fraction of particles. Acta Metall 31:437–452

    Article  Google Scholar 

  43. Booth-Morrison C, Zhou Y, Noebe RD, Seidman DN (2010) On the nanometer scale phase separation of a low-supersaturation Ni-Al-Cr alloy. Philos Magn 90:219–235

    Article  Google Scholar 

  44. Ardell AJ (2012) Gradient energy, interfacial energy and interface width. Scr Mater 66:423–426

    Article  Google Scholar 

  45. Al-Kassab T, Kompatscher M, Kirchheim R, Kostorz G, Schoenfeld B (2013) Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography. Micron 64:45–51

    Article  Google Scholar 

  46. Campbell CE (2008) Assessment of the diffusion mobilites in the γ′ and B2 phases in the Ni-Al-Cr system. Acta Mater 56:4277–4290

    Article  Google Scholar 

  47. Langer JS, Bar-on M, Miller HD (1975) New computational method in the theory of spinodal decomposition. Phys Rev A 11:1417–1429

    Article  Google Scholar 

  48. Kitahara K, Oono Y, Jasnow D (1988) Phase separation dynamics and external force field. Mod Phys Lett B 2:765–771

    Article  Google Scholar 

  49. Bray AJ (1994) Theory of phase-ordering kinetics. Adv Phys 43:357–459

    Article  Google Scholar 

  50. Bray AJ, Emmott CL (1995) Lifshitz-Slyozov scaling for late-stage coarsening with an order-parameter-dependent mobility. Phys Rev B 52:R685–R688

    Article  Google Scholar 

  51. Emmott CL, Bray AJ (1999) Phase-ordering dynamics with an order-parameter-dependent mobility: the large-n limit. Phys Rev E 59:213–217

    Article  Google Scholar 

  52. Lacasta AM, Hernández-Machado A, Sancho JM, Toral R (1992) Domain growth in binary mixtures at low temperatures. Phys Rev B 45:5276–5281

    Article  Google Scholar 

  53. Kitahara K, Imada M (1978) On the Kinetic equations for binary mixtures. Suppl Prog Theo Phys 64:65–73

    Article  Google Scholar 

  54. Sheng G, Wang T, Du Q, Wang KG, Liu ZK, Chen LQ (2010) Coarsening kinetics of a two phase mixture with highly disparate diffusion mobility. Commun Comput Phys 8:249–264

    Google Scholar 

  55. Dai S, Du Q (2016) Computational studies of coarsening rates for the Cahn-Hilliard equation with phase-dependent diffusion mobility. J Comput Phys 310:85–108

    Article  Google Scholar 

  56. Che DZ, Hoyt JJ (1995) Transient Ostwald ripening in systems with a concentration-dependent diffusivity: I. The LSW limit. Model Simul Mater Sci Eng 3:23–34

    Article  Google Scholar 

  57. Che DZ, Hoyt JJ (1995) Transient Ostwald ripening in systems with a concentration-dependent diffusivity: II. Nonzero volume fractions. Model Simul Mater Sci Eng 3:35–43

    Article  Google Scholar 

  58. Morral JE, Purdy GR (1994) Particle coarsening in binary and multicomponent alloys. Scr Metall Mater 30:905–908

    Article  Google Scholar 

  59. Morral JE, Purdy GR (1995) Thermodynamics of particle coarsening. J Alloys Compd 220:132–135

    Article  Google Scholar 

  60. Kuehmann CJ, Voorhees PW (1996) Ostwald ripening in ternary alloys. Metall Mater Trans 27A:937–943

    Article  Google Scholar 

  61. Umantsev A, Olson GB (1993) Ostwald ripening in multicomponent alloys. Scr Metall Mater 29:1135–1140

    Article  Google Scholar 

  62. Numakura H, Ikeda T, Nakajima H, Koiwa M (2001) Diffusion in Ni3Al, Ni3Ga and Ni3Ge. Mater Sci Eng A312:109–117

    Article  Google Scholar 

  63. Ardell AJ (1968) An application of the theory of particle coarsening: the γ′ precipitate in Ni-Al alloys. Acta Metall 16:511–516

    Article  Google Scholar 

  64. Manning JR (1967) Diffusion and the Kirkendall shift in binary alloys. Acta Metall 15:817–826

    Article  Google Scholar 

  65. Hancock GF (1971) Diffusion of nickel in alloys based on the intermetallic compound Ni3Al(γ′). Phys Stat Sol (a) 7:535–540

    Article  Google Scholar 

  66. Bronfin MB, Bulatov GS, Drugova IA (1975) Study of nickel self diffusion in intermetallide Ni3Al and pure nickel. Fiz Metal Metalloved 40:363–366

    Google Scholar 

  67. Hoshino K, Rothman SJ, Averback RS (1988) Tracer diffusion in pure and boron-doped Ni3Al. Acta Metall 36:1271–1279

    Article  Google Scholar 

  68. Frank S, Sodervall U, Herzig C (1995) Self-diffusion of Ni in single and polycrystals of Ni3Al-A study of SIMS and radiotracer analysis. Phys Stat Sol (b) 191:45–55

    Article  Google Scholar 

  69. Shi Y, Frohberg G, Wever H (1995) Diffusion of 63Ni and 114mIn in the γ′-phase Ni3Al. Phys Stat Sol (a) 152:361–375

    Article  Google Scholar 

  70. Hilpert K, Miller M, Gerads H, Nickel H (1990) Thermodynamic study of the liquid and solid alloys of the nickel-rich part of the Al-Ni phase diagram including the AlNi3 phase. Berichte Bunsengesell 94:40–47

    Article  Google Scholar 

  71. Ikeda T, Numakura H, Koiwa M (1998) A Bragg-Williams model for the thermodynamic activity and the thermodynamic factor in diffusion for ordered alloys with substitutional defects. Acta Mater 46:6605–6613

    Article  Google Scholar 

  72. Cserhati C, Paul A, Kodentsov AA, van Dal MJH, van Loo FJJ (2003) Intrinsic diffusion in Ni3Al system. Intermetallics 11:291–297

    Article  Google Scholar 

  73. Cserhati C, Szabo IA, Marton Z, Erdelyi G (2002) Tracer diffusion of 63Ni in Ni3(Al, Ge) ternary intermetallic compound. Intermetallics 10:887–892

    Article  Google Scholar 

  74. Belova IV, Murch GE (1998) Test of the validity of the Darken/Manning relation for diffusion in ordered alloys taking the L12 structure. Philos Magn A 78:1085–1092

    Article  Google Scholar 

  75. Ma Y, Ardell AJ (2003) The (γ + γ′)/γ′ phase boundary in the Ni-Al phase diagram from 600 to 1200 °C. Z Metallkde 94:972–975

    Article  Google Scholar 

  76. Calderon HA, Voorhees PW, Murray JL, Kostorz G (1994) Ostwald ripening in concentrated alloys. Acta Metall Mater 42:991–1000

    Article  Google Scholar 

  77. Du Y, Schuster JC (1999) Experimental investigations and thermodynamic descriptions of the Ni-Si and C-Ni-Si systems. Metall Mater Trans A30:2409–2418

    Article  Google Scholar 

  78. Nakajima H, Nonaka K, Sprengel W, Koiwa M (1997) Self-diffusion and interdiffusion in intermetallic compounds. Mater Sci Eng A240:819–827

    Article  Google Scholar 

  79. Cermak J, Rothova V (2002) Ni and Ga diffusion in polycrystalline Ni3Ga. Intermetallics 10:765–769

    Article  Google Scholar 

  80. Numakura H, Nishi K (2009) Application of mechanical spectroscopy to studies of atomic diffusion in ordered compounds. Mater Sci Eng A521–22:34–38

    Article  Google Scholar 

  81. Komai N, Watanabe M, Horita Z (1995) Interdiffusivity measurements and interface observations using Ni/Ni3Ge diffusion couples. Acta Metall Mater 43:2967–2974

    Article  Google Scholar 

  82. Ardell AJ, Nicholson RB (1966) Coarsening of γ′ in Ni-Al alloys. J Phys Chem Solids 27:1793–1804

    Article  Google Scholar 

  83. Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. 1. Interfacial free energy. J Chem Phys 28:258–267

    Article  Google Scholar 

  84. Seidman DN, Sudbrack CK, Yoon KE (2006) The use of 3-D atom-probe tomography to study nickel-based superalloys. JOM 58:34–39

    Article  Google Scholar 

  85. Dai S, Du Q (2012) Motion of interfaces governed by the Cahn-Hilliard equation with highly disparate diffusion mobility. SIAM J Appl Math 72:1818–1841

    Article  Google Scholar 

  86. Ansara I, Dupin N, Lukas HL, Sundman B (1997) Thermodynamic assessment of the Al-Ni system. J Alloys Compd 247:20–30

    Article  Google Scholar 

  87. Lee AA, Münch A, Süli E (2015) Degenerate mobilities in phase field models are insufficient to capture surface diffusion. Appl Phys Lett 107:081603

    Article  Google Scholar 

  88. Voigt A (2016) Comment on “Degenerate mobilities in phase field models are insufficient to capture surface diffusion” [Appl. Phys. Lett. 107, 081603 (2015)]. Appl Phys Lett 108:036101

    Article  Google Scholar 

  89. Lee AA, Münch A, Süli E (2016) Response to “Comment on ‘Degenerate mobilities in phase field models are insufficient to capture surface diffusion’” [Appl. Phys. Lett. 108, 036101 (2016)]. Appl Phy Lett 108:036102

    Article  Google Scholar 

  90. Sudbrack CK, Yoon KE, Noebe RD, Seidman DN (2006) Temporal evolution of the nanostructure and phase compositions in a model Ni-Al-Cr alloy. Acta Mater 54:3199–3210

    Article  Google Scholar 

  91. Jayanth CS, Nash P (1990) Experimental evaluation of particle coarsening theories. Mater Sci Tech 6:405–413

    Article  Google Scholar 

  92. Booth-Morrison C, Weninger J, Sudbrack CK, Mao Z, Noebe RD, Seidman DN (2008) Effects of solute concentrations on kinetic pathways in Ni-Al-Cr alloys. Acta Mater 56:3422–3438

    Article  Google Scholar 

Download references

Acknowledgements

Professor Vidvuds Ozolins, University of California, Los Angeles, provided particularly valuable insights into the thermodynamics and kinetics of transport through diffuse interfaces, as well as the limitations and nuances of phase field modeling. The author is truly grateful to the said professor for his help. Professor Jeffrey J. Hoyt, McMaster University, also provided helpful comments on coarsening and diffusion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Ardell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardell, A.J. Non-integer temporal exponents in trans-interface diffusion-controlled coarsening. J Mater Sci 51, 6133–6148 (2016). https://doi.org/10.1007/s10853-016-9953-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9953-0

Keywords

Navigation