Skip to main content

Advertisement

Log in

Chorio-retinal toxoplasmosis: treatment outcomes, lesion evolution and long-term follow-up in a single tertiary center

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Ocular toxoplasmosis is a common cause of ocular inflammation worldwide. The aim of this study is to characterize the clinical outcomes and lesion evolution of patients with ocular toxoplasmosis and to compare the primary and reactivation subgroups.

Methods

A retrospective population-based cohort study at one uveitis-specialized tertiary referral center. Patients presenting with active ocular toxoplasmosis between the years 2007–2016 were included. Primary ocular toxoplasmosis and reactivations were compared.

Results

Included were 22 patients, 64% female with a mean age of 29 ± 18 years, 59% (n = 13) were primary, 9% (n = 2) congenital and 32% (n = 7) reactivations. Visual acuity improved from 0.38 ± 0.44 to 0.20 ± 0.27 LogMAR (P = 0.026) after a mean of 37 ± 33 months. Initial lesion size was 2.38 ± 1.1 optic disc areas, reducing to 1.56 ± 1.24 following 2 months (34% reduction, P = 0.028) and to 1.17 ± 0.87 disc areas following one year (51% reduction, P = 0.012). Patients with macula-threatening lesions had worse visual acuity (0.50 ± 0.46 vs. 0.05 ± 0.07 LogMAR, P = 0.047). Primary and reactivation subgroups had similar presentations, visual outcomes and recurrence rates (all P > 0.05).

Conclusions

In this population, primary ocular toxoplasmosis was the most common presentation. Lesion size reduced during the initial months with limited change thereafter and a third of cases recurred. Macula-threatening lesions were associated with worse visual acuity, and no significant differences were seen between the primary and reactivation subgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Weiss LM, Dubey JP (2009) Toxoplasmosis: a history of clinical observations. Int J Parasitol 39(8):895–901

    Article  Google Scholar 

  2. Oréfice F, Vasconcelos-Santos DV, Costa RA, Oréfice JL (2016) Toxoplasmosis. In: Zierhut M, Pavesio C, Ohno S, Orefice F, Rao N (eds) Intraocular Inflammation. Springer, Berlin. https://doi.org/10.1007/978-3-540-75387-2_138

    Chapter  Google Scholar 

  3. Holland GN (2003) Ocular toxoplasmosis: a global reassessment. Part I: epidemiology and course of disease. Am J Ophthalmol 136(6):973–988

    Article  Google Scholar 

  4. McCannel CA, Holland GN, Helm CJ, Cornell PJ, Winston JV, Rimmer TG (1996) Causes of uveitis in the general practice of ophthalmology: UCLA Community-Based Uveitis Study Group. Am J Ophthalmol 121(1):35–46

    Article  CAS  Google Scholar 

  5. Kovacevic-Pavicevic D, Radosavljevic A, Ilic A, Kovacevic I, Djurkovic-Djakovic O (2012) Clinical pattern of ocular toxoplasmosis treated in a referral centre in Serbia. Eye (London, England) 26(5):723–728

    Article  CAS  Google Scholar 

  6. de-la-Torre A, Lopez-Castillo CA, Gomez-Marin JE (2009) Incidence and clinical characteristics in a Colombian cohort of ocular toxoplasmosis. Eye (London, England) 23(5):1090–1093

    Article  CAS  Google Scholar 

  7. Park Y-H, Nam H-W (2013) Clinical features and treatment of ocular toxoplasmosis. Korean J Parasitol 51(4):393–399

    Article  Google Scholar 

  8. Delair E, Monnet D, Grabar S, Dupouy-Camet J, Yera H, Brezin AP (2008) Respective roles of acquired and congenital infections in presumed ocular toxoplasmosis. Am J Ophthalmol 146(6):851–855

    Article  Google Scholar 

  9. Gilbert RE, Stanford MR (2000) Is ocular toxoplasmosis caused by prenatal or postnatal infection? Br J Ophthalmol 84(2):224–226

    Article  CAS  Google Scholar 

  10. Bosch-Driessen LEH, Berendschot TTJM, Ongkosuwito JV, Rothova A (2002) Ocular toxoplasmosis: clinical features and prognosis of 154 patients. Ophthalmology 109(5):869–878

    Article  Google Scholar 

  11. Butler NJ, Furtado JM, Winthrop KL, Smith JR (2013) Ocular toxoplasmosis II: clinical features, pathology and management. Clin Exp Ophthalmol 41(1):95–108

    Article  Google Scholar 

  12. Eylan E, Jacobs L, Riklis S, Cahan M (1966) Epidemiology of toxoplasmosis in Israel. In: Augusto C (ed) Proceedings of the first international congress of parasitology, Vol 1, Elsevier, pp 198–200. https://doi.org/10.1016/B978-1-4832-2913-3.50172-6

  13. Markovich MP, Shohat T, Riklis I, Avni R, Yujelevski-Rozenblit D, Bassal R et al (2014) Seroepidemiology of Toxoplasma gondii infection in the Israeli population. Epidemiol Infect 142(1):149–155

    Article  CAS  Google Scholar 

  14. Segal G, Zimlichman E (2015) The advantages of a large tertiary academic medical center in managing disease and promoting health: a glimpse into Sheba Medical Center. Harefuah 154(2):78–80

    PubMed  Google Scholar 

  15. Qiang XIAO, Wenjing YE, Zhu ZHU, Yao CHEN, Hailei Z (2005) A simple non-destructive method to measure leaf area using digital camera and Photoshop software. Chin J Ecol 6:711–714

    Google Scholar 

  16. Habot-Wilner Z, Tiosano L, Sanchez JM, Shulman S, Barequet D, Rahat O et al (2018) Demographic and clinical features of pediatric uveitis in Israel. Ocular Immunol Inflamm. https://doi.org/10.1080/09273948.2018.1535079

    Article  Google Scholar 

  17. Goldenberg D, Goldstein M, Loewenstein A, Habot-Wilner Z (2013) Vitreal, retinal, and choroidal findings in active and scarred toxoplasmosis lesions: a prospective study by spectral-domain optical coherence tomography. Graefe’s Archive fClin Exp Ophthalmol 251(8):2037–2045

    Article  Google Scholar 

  18. Salant H, Mumcuoglu KY, Baneth G (2014) Ectoparasites in urban stray cats in Jerusalem, Israel: differences in infestation patterns of fleas, ticks and permanent ectoparasites. Med Vet Entomol 28(3):314–318

    Article  CAS  Google Scholar 

  19. Sepulveda-Arias JC, Gomez-Marin JE, Bobic B, Naranjo-Galvis CA, Djurkovic-Djakovic O (2014) Toxoplasmosis as a travel risk. Travel Med Infect Dis 12(6 Pt A):592–601

    Article  Google Scholar 

  20. Gofin R, Adler B, Palti H (2004) Screening tests in prenatal care: a national study in Israel. Israel Med Assoc J: IMAJ 6(9):535–539

    Google Scholar 

  21. Sabin AB, Feldman HA (1948) Dyes as microchemical indicators of a new immunity phenomenon affecting a protozoon parasite (toxoplasma). Science 108(2815):660–663

    Article  CAS  Google Scholar 

  22. Hofgartner WT, Swanzy SR, Bacina RM, Condon J, Gupta M, Matlock PE et al (1997) Detection of immunoglobulin G (IgG) and IgM antibodies to Toxoplasma gondii: evaluation of four commercial immunoassay systems. J Clin Microbiol 35(12):3313–3315

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicktoria Vishnevskia-Dai.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interest with the submission.

Informed consent

The study was performed following all the guidelines for experimental investigations required by the Institutional Review Board of the Sheba Medical Center.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishnevskia-Dai, V., Achiron, A., Buhbut, O. et al. Chorio-retinal toxoplasmosis: treatment outcomes, lesion evolution and long-term follow-up in a single tertiary center. Int Ophthalmol 40, 811–821 (2020). https://doi.org/10.1007/s10792-019-01242-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-019-01242-1

Keywords

Navigation