Skip to main content
Log in

Variation in GmAOS1 promoter is associated with soybean defense against insect attack

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Soybean (Glycine max L.) displays considerable variation in its resistance to insects. Characterization and application of insect resistance genes in soybean germplasm may be a sustainable and economical approach to soybean production. In this study, we demonstrated that the gene encoding allene oxide synthase (GmAOS1) was associated with soybean defense against the common cutworm (CCW, Spodoptera litura Fabricius) attack through gene expression analysis and association analysis. The expression of GmAOS1 in stems and leaves of resistant accessions was higher than that of susceptible accessions in the undamaged soybean plant. After CCW feeding, the transcript levels of GmAOS1 increased and reached their maximal values sooner in the leaves of resistant accession than they did in susceptible accession. The genomic sequence of GmAOS1 was re-sequenced and aligned in 184 soybean accessions. Forty-three SNPs/Indels were found in its promoter region and only one single nucleotide polymorphism was found in its coding region. Association analysis showed that GmAOS1 promoter polymorphisms were significantly associated with three soybean defense indexes. GmAOS1_19 was the most resistant allele associated with soybean resistance to CCW. Two elements (TATCCAT/C motif and Box II-like sequence) located at genomic regions upstream of GmAOS1_21 were significantly associated with compensatory regrowth of soybean plants. Gene expression analysis indicated that the accessions containing different GmAOS1 promoters and with different CCW resistance grades showed different expression levels of GmAOS1. Our data indicate that variation in GmAOS1 promoter is associated with soybean defense against CCW attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avanci NC, Luche DD, Goldman GH, Goldman MHS (2010) Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet Mol Res 9:484–505

    Article  CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Chi Y, Huang F, Liu H, Yang S, Yu D (2011) An APETALA1-like gene of soybean regulates flowering time and specifies floral organs. J Plant Physiol 168:2251–2259

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Gai J, Ji D, Ren Z (1997) A study of leaf-feeding insect species on soybeans in Nanjing. Soybean Sci 16:12–16

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fan R, Wang H, Wang Y, Yu D (2012) Proteomic analysis of soybean defense response induced by cotton worm (Prodenia litura, Fabricius) feeding. Proteome Sci 10:16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fehr WR, Cavines CE, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci 11:929–931

    Article  Google Scholar 

  • Fu S, Wang H, Wu J, Liu H, Gai J, Yu D (2007) Mapping insect resistance QTLs of soybean with RIL population. Hereditas (Beijing) 29:1139–1143

    Article  CAS  Google Scholar 

  • Halitschke R, Ziegler J, Keinanen M, Baldwin IT (2004) Silencing of hydroperoxide lyase and allene oxide synthase reveals substrate and defense signaling crosstalk in Nicotiana attenuata. Plant J 40:35–46

    Google Scholar 

  • Keim P, Olson TC, Shoemaker RC (1988) A rapid protocol for isolating soybean DNA. Soybean Genet Newsl 15:150–152

    Google Scholar 

  • Kim SY, Wu R (1990) Multiple protein factors bind to a rice glutelin promoter region. Nucleic Acids Res 18:6845–6852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Komatsu K, Okuda S, Takahashi M, Matsunaga R (2004) Antibiotic effect of insect-resistant soybean on common cutworm (Spodoptera litura) and its inheritance. Breed Sci 54:27–32

    Article  Google Scholar 

  • Komatsu K, Okuda S, Takahashi M, Matsunaga R, Nakazawa Y (2005) QTL mapping of antibiosis to common cutworm (Spodoptera litura Fabricius) in soybean. Crop Sci 45:2044–2048

    Article  CAS  Google Scholar 

  • Komatsu K, Takahashi M, Nakazawa Y (2008) Antibiosis resistance of QTL introgressive soybean lines to common cutworm (Spodoptera litura Fabricius). Crop Sci 48:527–532

    Article  CAS  Google Scholar 

  • Komatsu K, Takahashi M, Nakazawa Y (2010) Genetic study on resistance to the common cutworm and other leaf-eating insects in soybean. Jpn Agric Res Quart 44:117–125

    Article  Google Scholar 

  • Kongrit D, Jisaka M, Iwanaga C, Yokomichi H, Katsybe T, Nishmura K, Nagaya T, Yokota K (2007) Molecular cloning and functional expression of soybean allene oxide synthases. Biosci Biotechnol Biochem 71:491–498

    Article  CAS  PubMed  Google Scholar 

  • Laudert D, Schaller F, Weiler EW (2000) Transgenic Nicotiana tabacum and Arabidopsis thaliana plants overexpressing allene oxide synthase. Planta 211:163–165

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Déhais P, Moreau Y, De Moor B, Rouzé P, Rombauts S (2002) PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(Database issue):325–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu H, Wang H, Li Q, Xu P, Gai J, Yu D (2005) Inheritance analysis and mapping QTLs related to cotton worm resistance in soybean. Scientia Agricultura Sinica 38:1369–1372

    CAS  Google Scholar 

  • Lu CA, Lim EK, Yu SM (1998) Sugar response sequence in the promoter of a rice α-amylase gene serves as a transcriptional enhancer. J Biol Chem 273:10120–10131

    Article  CAS  PubMed  Google Scholar 

  • Narvel JM, Walker DR, Rector BG, All JN, Parrott WA, Boerma HR (2001) A retrospective DNA marker assessment of the development of insect resistant soybean. Crop Sci 41:1931–1939

    Article  CAS  Google Scholar 

  • Neale BM, Sham PC (2004) The future of association studies: gene-based analysis and replication. Am J Hum Genet 75:353–362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Painter RH (1951) Insect resistance in crop plants. Macmillan, New York

    Google Scholar 

  • Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31:1–12

    Article  PubMed  Google Scholar 

  • Pritchard JK, Wen W (2004) Documentation for STRUCTURE software. The University of Chicago Press, Chicago

    Google Scholar 

  • Rector BG, All JN, Parrott WA, Boerma HR (1998) Identification of molecular markers linked to quantitative trait loci for soybean resistance to corn earworm. Theor Appl Genet 96:786–790

    Article  CAS  Google Scholar 

  • Rector BG, All JN, Parrott WA, Boerma HR (1999) Quantitative trait loci for antixenosis resistance to corn earworm in soybean. Crop Sci 39:531–538

    Article  Google Scholar 

  • Rector BG, All JN, Parrott WA, Boerma HR (2000) Quantitative trait loci for antibiosis resistance to corn earworm in soybean. Crop Sci 40:233–238

    Article  Google Scholar 

  • Severin AJ, Woody JL, Bolon YT, Joseph B, Diers BW, Farmer AD, Muehlbauer GJ, Nelson RT, Grant D, Specht JE, Graham MA, Cannon SB, May GD, Vance CP, Shoemaker RC (2010) RNA-Seq atlas of glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:160

    Article  PubMed Central  PubMed  Google Scholar 

  • Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV (2003) PlantProm: a database of plant promoter sequences. Nucleic Acids Res 31:114–117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sivasankar S, Sheldrick B, Rothstein SJ (2000) Expression of allene oxide synthase determines defense gene activation in tomato. Plant Physiol 122:1335–1342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128

    Article  CAS  PubMed  Google Scholar 

  • Terry LI, Chase K, Orf J, Jarvik T, Mansur L, Lark KG (1999) Insect resistance in recombinant inbred soybean lines derived from non-resistant parents. Entomol Exp Appl 91:465–476

    Article  Google Scholar 

  • Terry LI, Chase K, Jarvik T, Orf J, Mansur L, Lark KG (2000) Soybean quantitative trait loci for resistance to insects. Crop Sci 40:375–382

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Tiffin P (2000) Mechanisms of tolerance to herbivore damage: what do we know? Evol Ecol 14:523–536

    Article  Google Scholar 

  • van der Meijden E, Wijn M, Verkaar HJ (1988) Defence and regrowth, alternative plant strategies in the struggle against herbivores. Oikos 51:355–363

    Article  Google Scholar 

  • Van Duyn JW, Turnipseed SG, Maxwell JD (1971) Resistance in soybeans to the Mexican bean beetle I. sources of resistance. Crop Sci 11:572–573

    Article  Google Scholar 

  • Vick BA, Zimmerman DC (1984) Biosynthesis of jasmonic acid by several plant species. Plant Physiol 75:458–461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Von Malek B, Schneitz EGK, Keller B (2002) The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta 216:187–192

    Article  Google Scholar 

  • Walker DR, Boerma HR, All JN, Parrott W (2002) Combining cry1Ac with QTL alleles from PI 229358 to improve soybean resistance to lepidopteran pests. Mol Breed 9:43–51

    Article  CAS  Google Scholar 

  • Walker DR, Narvel JM, Boerma HR, All JN, Parrott WA (2004) A QTL that enhances and broadens Bt insect resistance in soybean. Theor Appl Genet 109:1051–1057

    Article  PubMed  Google Scholar 

  • Wang H, Yu D, Wu Q, Gai J (2004) Characterization of resistance genes to cotton worm with SSR markers in soybean. Soybean Sci 23:91–95

    Google Scholar 

  • Wang H, Gao Z, Zhang D, Cheng H, Yu D (2011) Identification of genes with soybean resistance to common cutworm by association analysis. Chin Bot 46:514–524

    Article  Google Scholar 

  • Wei Z, Hu W, Lin Q, Cheng X, Tong M, Zhu L, Chen R, He G (2009) Understanding rice plant resistance to the brown planthopper (Nilaparvata lugens): A proteomic approach. Proteomics 9:2798–2808

    Google Scholar 

  • Wen Z, Ding Y, Zhao T, Gai J (2009) Genetic diversity and peculiarity of annual wild soybean (G. soja Sieb. et Zucc.) from various eco-regions in China. Theor Appl Genet 119:371–381

    Article  CAS  PubMed  Google Scholar 

  • Wingler A, Roitsch T (2008) Metabolic regulation of leaf senescence: interactions of sugar signalling with biotic and abiotic stress responses. Plant Biol (Suppl) 1:50–62

    Article  Google Scholar 

  • Wu J, Wu Q, Wu Q, Gai J, Yu D (2008) Constitutive overexpression of AOS-like gene from soybean enhanced tolerance to insect attack in transgenic tobacco. Biotechnol Lett 30:1693–1698

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Warburton M, Crouch J (2011) Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 51:433

    Article  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Plant Bio 17:155–160

    Article  CAS  Google Scholar 

  • Zavala JA, Baldwin IT (2006) Jasmonic acid signalling and herbivore resistance traits constrain regrowth after herbivore attack in Nicotiana attenuata. Plant Cell Environ 29:1751–1760

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Walker DR, Boerma HR, All JN, Parrott WA (2006) Fine mapping of a major insect resistance QTL in soybean and its interaction with minor resistance QTLs. Crop Sci 46:1094–1099

    Article  Google Scholar 

  • Ziegler J, Keinänen M, Baldwin IT (2001) Herbivore-induced allene oxide synthase transcripts and jasmonic acid in Nicotiana attenuata. Phytochemistry 58:729–738

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31201230) and the Natural Science Foundation of Jiangsu Province of China (BK2012768).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyue Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 349 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Gao, Z., Liu, H. et al. Variation in GmAOS1 promoter is associated with soybean defense against insect attack. Euphytica 196, 365–374 (2014). https://doi.org/10.1007/s10681-013-1038-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-1038-4

Keywords

Navigation