Skip to main content
Log in

Combining cry1Ac with QTL alleles from PI 229358 to improve soybean resistance to lepidopteran pests

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A QTL conditioning corn earworm resistance in soybean PI 229358 and asynthetic Bacillus thuringiensis cry1Ac transgene from therecurrent parent ‘Jack-Bt’ were pyramided intoBC2F3 plants by marker-assisted selection. Segregatingindividuals were genotyped at SSR markers linked to an anitbiosis/antixenosisQTL on linkage group M, and were tested for the presence ofcry1Ac. Marker-assisted selection was used during andafter the two backcrosses to develop a series of BC2F3plants with or without the crylAc transgene and the QTLconditioning for resistance BC2F3 plants that werehomozygous for parental alleles at markers on LG M, and whicheither had or lacked cry1Ac, were assigned to one of fourpossible genotype classes. These plants were used in no-choice, detached leaffeeding bioassays with corn earworm and soybean looper larvae (Lepidoptera:Noctuidae) to evaluate the relative antibiosis in the different genotypeclasses. Resistance was measured as larval weight gain and degree of foliageconsumption. Few larvae of either species survived on leaves expressing theCry1Ac protein. Though not as great as the effect of Cry1Ac, the PI229358-derived LG M QTL also had a detrimental effect on larval weights of bothpest species, and on defoliation by corn earworm, but did not reduce defoliation bysoybean looper. Weights of soybean looper larvae fed foliage from transgenicplants with the PI-derived QTL were lower than those of larvae fed transgenictissue with the corresponding Jack chromosomal segment. This work demonstratesthe usefulness of SSRs for marker-assisted selection in soybean, and shows thatcombining transgene-and QTL-mediated resistance to lepidopteran pests may be aviable strategy for insect control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akkaya M.S., Bhagwat A.A. and Cregan P.B. 1992. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132: 1131-1139.

    Google Scholar 

  • Boethel D.J. 1999. Assessment of soybean germplasm for multiple insect resistance. In: Clement S.L. and Quisenberry S.S. (eds), Global Plant Genetic Resources for Insect-Resistant Crops. CRC Press, Boca Raton, FL, pp. 101-129.

    Google Scholar 

  • Clark W.J., Harris F.A., Maxwell F.G. and Hartwig E.E. 1972. Resistance of certain soybean cultivars to bean leaf beetle, striped blister beetle, and bollworm. J. Econ. Entomol. 65: 1669-1672.

    Google Scholar 

  • Cregan P.B., Jarvik T., Bush A.L., Shoemaker R.C., Lark K.G., Kahler A.L. et al. 1999. An integrated genetic linkage map of the soybean genome. Crop Sci. 39: 1464-1490.

    Google Scholar 

  • Diwan N. and Cregan P.B. 1997. Automated sizing of fluorescentlabeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor. Appl. Genet. 95: 723-733.

    Google Scholar 

  • Douches D.S., Westedt A.L., Zarka K. and Schroeter B. 1998. Potato transformation to combine natural and engineered resistance for controlling potato tuber moth. HortScience 33: 1053-1056.

    Google Scholar 

  • Forcada C., Alcácer E., Garcerá M.D. and Martínez R. 1996. Differences in the midgut proteolytic activity of two Heliothis virscens strains, one susceptible and one resistant to Bacillus thuringiensis toxins. Arch. Insect Biochem. Physiol. 31: 257-272.

    Google Scholar 

  • Frutos R., Rang C. and Royer M. 1999. Managing insect resistance to plants producing Bacillus thuringiensis toxins. Crit. Rev. Biotechnol. 19: 227-276.

    Google Scholar 

  • Gould F., Martinez-Ramirez A., Anderson A., Ferre J., Silva F.J. and Moar W.J. 1992. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc. Natl. Acad. Sci USA 89: 7986-7990.

    Google Scholar 

  • Haile F.J., Higley L.G. and Specht J.E 1998. Soybean cultivars and insect defoliation: yield loss and economic injury levels. Agron. J. 90: 344-352.

    Google Scholar 

  • Hatchett J.H., Beland G.L. and Hartwig E.E 1976. Leaf-feeding resistance to bollworm and tobacco budworm in three soybean plant introductions. Crop Sci. 16: 277-280.

    Google Scholar 

  • Keim P., Olson T.C. and Shoemaker R.C. 1988. A rapid protocol for isolating soybean DNA. Soybean Genet. Newsl. 15: 150-152.

    Google Scholar 

  • Keller M., Sneh B., Strizhov N., Prudovsky E., Regev A., Koncz C. et al. 1996. Digestion of δ-endotoxin by gut proteases may explain reduced sensitivity of advanced instar larvae of Spodoptera littoralis to CryIC. Insect Biochem. Mol. Biol. 26: 365-373.

    Google Scholar 

  • Kilen T.C., Hatchet J.H. and Hartwig E.E. 1977. Evaluation of early generation soybeans for resistance to soybean looper. Crop Sci. 17: 397-398.

    Google Scholar 

  • Kresovich S., Szewc-McFadden A.K. and Bliek S.M 1995. Abundance and characterization of simple-sequence repeats (SSRs) isolated from a size-fractioned genomic library of Brassica napus L. (rapeseed). Theor. Appl. Genet. 91: 206-211.

    Google Scholar 

  • Lee S.H., Bailey M.A., Mian M.A.R., Shipe E.R., Ashley D.A., Parrott W.A. et al. 1996. Identification of quantitative trait loci for plant height, lodging maturity in a soybean population segregating for growth habit. Theor. Appl. Genet. 92: 516-523.

    Google Scholar 

  • Maroof M.A.S., Biyashev R.M., Yang G.P., Zhang Q. and Allard R.W 1994. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc. Natl. Acad. Sci. USA 91: 5466-5470.

    Google Scholar 

  • Narvel J.M., Walker D.R., Rector B.G., All J.N., Parott W.A. and Boerma H.R. 2001. A retrospective DNA marker assessment of the development of insect resistant soybeen. Crop. Sci. 41: 1931-1939.

    Google Scholar 

  • McGaughey W.H. and Whalon M.E. 1992. Managing insect resistance to Bacillus thuringiensis toxins. Science 258: 1451-1455.

    Google Scholar 

  • Oppert B., Kramer K.J., Beeman R.W., Johnson D. and Mc-Gaughey W.H 1997. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J. Biol. Chem. 272: 23473-23476.

    Google Scholar 

  • Rafalski J.A. and Tingey S.V. 1993. Genetic diagnostics in plant breeding: RAPDs, microsatllites and machines. Trends Genet. 9: 275-279.

    Google Scholar 

  • Rector B.G., All J.N., Parrott W.A. and Boerma H.R 1998. Identification of molecular markers associated with quantitative trait loci for soybean resistance to corn earworm. Theor. Appl. Genet. 96: 786-790.

    Google Scholar 

  • Rector B.G., All J.N., Parrott W.A. and Boerma H.R 1999. Quantitative trait loci for antixenosis resistance to corn earworm in soybean. Crop Sci. 39: 531-538.

    Google Scholar 

  • Rector B.G., All J.N., Parrott W.A. and Boerma H.R 2000. Quantitative trait loci for antibiosis resistance to corn earworm in soybean. Crop Sci. 40: 233-238.

    Google Scholar 

  • Rongwen J., Akkaya M.S., Bhagwat A.A., Lavi U. and Cregan P.B. 1995. The use of microsatellite DNA markers for soybean genotype identification. Theor. Appl. Genet. 90: 43-48.

    Google Scholar 

  • Roush R.T. 1998. Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? Phil. Trans. R. Soc. Lond. B 353: 1777-1786.

    Google Scholar 

  • Sachs E.S., Benedict J.H., Taylor J.F., Stelly D.M., Davis S.K. and Altman D.W. 1996. Pyramiding Cry1A(b) insecticidal protein and terpenoïds in cotton to resist tobacco budworm (Lepidoptera: Noctuidae). Environ. Entomol. 25: 1257-1266.

    Google Scholar 

  • Santos M.O., Adang M.J., All J.N., Boerma H.R. and Parrott W.A. 1996. Testing transgenes for insect resistance using Arabidopsis. Mol. Breed. 3: 183-194.

    Google Scholar 

  • Steel R.G.D. and Torrie J.H. 1960. Principles and Procedures of Statistics. McGraw-Hill, New York.

    Google Scholar 

  • Stewart C.N., Adang M.J., All J.N., Boerma H.R., Cardineau G., Tucker D. et al. 1996. Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol. 112: 121-129.

    Google Scholar 

  • Stone T.B., Sims S.R. and Marrone P.G. 1989. Selection of tobacco budworm for resistance to a genetically engineered Pseudomonas fluorescens containing the δ-endotoxin of Bacillus thuringiensis subsp. kurstaki. J. Invert. Path. 53: 228-234.

    Google Scholar 

  • Tabashnik B.E. 1994. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 39: 47-79.

    Google Scholar 

  • Van Duyn J.W., Turnipseed S.G. and Maxwell J.D. 1971. Resistance in soybean to the Mexican bean beetle. Crop Sci. 11: 572-573.

    Google Scholar 

  • Walker D.R., All J.N., McPherson R.M., Boerma H.R. and Parrott W.A. 2000. Field evaluation of soybean engineered with a synthetic cry1Ac transgene for resistance to corn earworm, soybean looper, velvetbean caterpillar (Lepidoptera: Noctuidae), and lesser cornstalk borer (Lepidoptera: Pyralidae). J. Econ. Entomol. 93: 613-622.

    Google Scholar 

  • Weber J.L. 1990. Informativeness of human (dC-dA)n (dG-dT)n polymorphisms. Genomics 7: 524-530.

    Google Scholar 

  • Weber J.L. and May P.E. 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44: 388-396.

    Google Scholar 

  • Ziegle J.S., Su Y., Corcoran K.P., Nie L., Mayrand P.E., Hoff L.B. et al. 1992. Application of automated DNA sizing technology for genotyping microsatellite loci. Genomics 14: 1026-1031.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, D., Roger Boerma, H., All, J. et al. Combining cry1Ac with QTL alleles from PI 229358 to improve soybean resistance to lepidopteran pests. Molecular Breeding 9, 43–51 (2002). https://doi.org/10.1023/A:1018923925003

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018923925003

Navigation