Skip to main content

Advertisement

Log in

Finite element simulation of ultrasonic wave propagation in a dental implant for biomechanical stability assessment

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Dental implant stability, which is an important parameter for the surgical outcome, can now be assessed using quantitative ultrasound. However, the acoustical propagation in dental implants remains poorly understood. The objective of this numerical study was to understand the propagation phenomena of ultrasonic waves in cylindrically shaped prototype dental implants and to investigate the sensitivity of the ultrasonic response to the surrounding bone quantity and quality. The 10-MHz ultrasonic response of the implant was calculated using an axisymetric 3D finite element model, which was validated by comparison with results obtained experimentally and using a 2D finite difference numerical model. The results show that the implant ultrasonic response changes significantly when a liquid layer is located at the implant interface compared to the case of an interface fully bounded with bone tissue. A dedicated model based on experimental measurements was developed in order to account for the evolution of the bone biomechanical properties at the implant interface. The effect of a gradient of material properties on the implant ultrasonic response is determined. Based on the reproducibility of the measurement, the results indicate that the device should be sensitive to the effects of a healing duration of less than one week. In all cases, the amplitude of the implant response is shown to decrease when the dental implant primary and secondary stability increase, which is consistent with the experimental results. This study paves the way for the development of a quantitative ultrasound method to evaluate dental implant stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aparicio C, Lang NR, Rangert B (2006) Validity and clinical significance of biomechanical testing of implant/bone interface. Clin Oral Implant Res 17:2–7

    Article  Google Scholar 

  • Arndt C, Voigt C, Steinke H, von Salis-Soglio G, Scholz R (2012) Experimental evidence of impingement induced strains at the interface and the periphery of an embedded acetabular cup implant. J Biomech Eng T ASME 134

  • Balshi SF, Allen FD, Wolfinger GJ, Balshi TJ (2005) A resonance frequency analysis assessment of maxillary and mandibular immediately loaded implants. Int J Oral Maxillofac Implants 20:584–594

    Google Scholar 

  • Bardyn T, Gedet P, Hallermann W, Buchler P (2009) Quantifying the influence of bone density and thickness on resonance frequency analysis: an in vitro study of biomechanical test materials. Int J Oral Maxillofac Implants 24:1006–1014

    Google Scholar 

  • Blanco J, Alvarez E, Munoz F, Linares A, Cantalapiedra A (2011) Influence on early osseointegration of dental implants installed with two different drilling protocols: a histomorphometric study in rabbit. Clin Oral Implants Res 22:92–99

    Article  Google Scholar 

  • Blanes RJ, Bernard JP, Blanes ZM, Belser UC (2007) A 10-year prospective study of ITI dental implants placed in the posterior region. I: clinical and radiographic results. Clin Oral Implants Res 18:699–706

    Article  Google Scholar 

  • Capek L, Simunek A, Slezak R, Dzan L (2009) Influence of the orientation of the Osstell transducer during measurement of dental implant stability using resonance frequency analysis: a numerical approach. Med Eng Phys 31:764–769. doi:10.1016/j.medengphy.2009.02.003

    Article  Google Scholar 

  • Chang MC et al (2003) Elasticity of alveolar bone near dental implant–bone interfaces after one month’s healing. J Biomech 36:1209–1214. doi:10.1016/s0021-9290(03)001133-1

    Article  Google Scholar 

  • Coelho PG et al (2010) Biomechanical evaluation of endosseous implants at early implantation times: a study in dogs. J Oral Maxillofac Surg 68:1667–1675

    Article  Google Scholar 

  • de Almeida MS, Maciel CD, Pereira JC (2007) Proposal for an ultrasonic tool to monitor the osseointegration of dental implants. Sensors 7:1224–1237

    Article  Google Scholar 

  • Franchi M et al (2007) Influence of different implant surfaces on peri-implant osteogenesis: histomorphometric analysis in sheep. J Periodontol 78:879–888

    Article  Google Scholar 

  • Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 275A:1081–1101

    Article  Google Scholar 

  • Gill A, Shellock FG (2012) Assessment of MRI issues at 3-Tesla for metallic surgical implants: findings applied to 61 additional skin closure staples and vessel ligation clips. J Cardiov Magn Reson 14

  • Glauser R, Sennerby L, Meredith N, Ree A, Lundgren A, Gottlow J, Hammerle CHF (2004) Resonance frequency analysis of implants subjected to immediate or early functional occlusal loading: successful vs. failing implants. Clin Oral Implant Res 15:428–434

    Article  Google Scholar 

  • Haïat G, Naili S, Vu MB, Desceliers C, Soize C (2011) Equivalent contributing depth investigated by a lateral wave with axial transmission in viscoelastic cortical bone. J Acoust Soc Am 129:114–120

    Article  Google Scholar 

  • Haïat G, Naili S, Grimal Q, Talmant M, Desceliers C, Soize C (2009) Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission. J Acoust Soc Am 125:4043–4052

    Article  Google Scholar 

  • Haïat G, Naili S, Vu M-B, Desceliers C, Soize C (2011) Equivalent contributing depth investigated by a lateral wave with axial transmission in heterogeneous viscoelastic cortical bone. J Acoust Soc Am 129:EL114–EL120

    Article  Google Scholar 

  • Haïat G, Padilla F, Laugier P (2008) Fast wave propagation in trabecular bone: numerical study of the influence of porosity and structural anisotropy. J Acoust Soc Am 123:194–705

    Google Scholar 

  • Haïat G, Padilla F, Peyrin F, Laugier P (2007) Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: a 3D model simulation. J Bone Miner Res 22:665–674

    Article  Google Scholar 

  • Haïat G, Wang HL, Brunski JB (2014) Effects of biomechanical properties of the bone-implant interface on dental implant stability: from in silico approaches to the patient’s mouth. Annu Rev Biomed Eng 16:187–213

    Article  Google Scholar 

  • Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover civil and mechanical engineering. Dover Publications, Mineola, New York

  • Huja SS, Katona TR, Burr DB, Garetto LP, Roberts WE (1999) Microdamage adjacent to endosseous implants. Bone 25:217–222

    Article  Google Scholar 

  • Laugier P, Haïat G (2010) Bone quantitative ultrasound. Springer, Berlin

    Google Scholar 

  • Luo GM, Sadegh AM, Alexander H, Jaffe W, Scott D, Cowin SC (1999) The effect of surface roughness on the stress adaptation of trabecular architecture around a cylindrical implant. J Biomech 32:275–284

  • Mathieu V, Anagnostou F, Soffer E, Haiat G (2011a) Numerical simulation of ultrasonic wave propagation for the evaluation of dental implant biomechanical stability. J Acoust Soc Am 129:4062–4072

    Article  Google Scholar 

  • Mathieu V, Anagnostou F, Soffer E, Haiat G (2011b) Ultrasonic evaluation of dental implant biomechanical stability: an in vitro study. Ultrasound Med Biol 37:262–270

    Article  Google Scholar 

  • Mathieu V et al (2011c) Micro-Brillouin scattering measurements in mature and newly formed bone tissue surrounding an implant. J Biomech Eng T ASME 133:021006–021006

    Article  Google Scholar 

  • Mathieu V, Vayron R, Richard G, Lambert G, Naili S, Meningaud JP, Haiat G (2014) Biomechanical determinants of the stability of dental implants: influence of the bone–implant interface properties. J Biomech 47:3–13

    Article  Google Scholar 

  • Mathieu V, Vayron R, Soffer E, Anagnostou F, Haiat G (2012) Influence of healing time on the ultrasonic response of the bone–implant interface. Ultrasound Med Biol 38:611–618

    Article  Google Scholar 

  • Meredith N, Alleyne D, Cawley P (1996) Quantitative determination of the stability of the implant–tissue interface using resonance frequency analysis. Clin Oral Implant Res 7:261–267

    Article  Google Scholar 

  • Meredith N, Friberg B, Sennerby L, Aparicio C (1998) Relationship between contact time measurements and PTV values when using the Periotest to measure implant stability. Int J Prosthodont 11:269–275

    Google Scholar 

  • Meredith N, Shagaldi F, Alleyne D, Sennerby L, Cawley P (1997) The application of resonance frequency measurements to study the stability of titanium implants during healing in the rabbit tibia. Clin Oral Implant Res 8:234–243

    Article  Google Scholar 

  • Merheb J, Van Assche N, Coucke W, Jacobs R, Naert I, Quirynen M (2010) Relationship between cortical bone thickness or computerized tomography-derived bone density values and implant stability. Clin Oral Implants Res 21:612–617

    Article  Google Scholar 

  • Naili S, Vu MB, Grimal Q, Talmant M, Desceliers C, Soize C, Haiat G (2010) Influence of viscoelastic and viscous absorption on ultrasonic wave propagation in cortical bone: application to axial transmission. J Acoust Soc Am 127:2622–2628

    Article  Google Scholar 

  • Njeh CF, Hans D, Wu C, Kantorovich E, Sister M, Fuerst T, Genant HK (1999) An in vitro investigation of the dependence on sample thickness of the speed of sound along the specimen. Med Eng Phys 21:651–659

    Article  Google Scholar 

  • Nkenke E, Hahn M, Weinzierl K, Radespiel-Troger M, Neukam FW, Engelke K (2003) Implant stability and histomorphometry: a correlation study in human cadavers using stepped cylinder implants. Clin Oral Implants Res 14:601–609

    Article  Google Scholar 

  • Pattijn V et al (2007) Resonance frequency analysis of implants in the guinea pig model: influence of boundary conditions and orientation of the transducer. Med Eng Phys 29:182–190

    Article  Google Scholar 

  • Pattijn V, Van Lierde C, Van der Perre G, Naert I, Sloten JV (2006) The resonance frequencies and mode shapes of dental implants: rigid body behaviour versus bending behaviour—a numerical approach. J Biomech 39:939–947

    Article  Google Scholar 

  • Rabel A, Kohler SG, Schmidt-Westhausen AM (2007) Clinical study on the primary stability of two dental implant systems with resonance frequency analysis. Clin Oral Invest 11:257–265

    Article  Google Scholar 

  • Raghavendra S, Wood MC, Taylor TD (2005) Early wound healing around endosseous implants: a review of the literature. Int J Oral Maxillofac Implants 20:425–431

    Google Scholar 

  • Sansalone V, Bousson V, Naili S, Bergot C, Peyrin F, Laredo JD, Haiat G (2012) Anatomical distribution of the degree of mineralization of bone tissue in human femoral neck: impact on biomechanical properties. Bone 50:876–884

    Article  Google Scholar 

  • Sansalone V et al (2010) Determination of the heterogeneous anisotropic elastic properties of human femoral bone: from nanoscopic to organ scale. J Biomech 43:1857–1863. doi:10.1016/j.jbiomech.2010.03.034

    Article  Google Scholar 

  • Sasso M, Haiat G, Talmant M, Laugier P, Naili S (2008a) Singular value decomposition-based wave extraction in axial transmission: application to cortical bone ultrasonic characterization. IEEE Trans Ultrason Ferroelectr Freq Control 55:1328–1332

    Article  Google Scholar 

  • Sasso M, Haiat G, Yamato Y, Naili S, Matsukawa M (2007) Frequency dependence of ultrasonic attenuation in bovine cortical bone: an in vitro study. Ultrasound Med Biol 33:1933–1942

    Article  Google Scholar 

  • Sasso M, Haiat G, Yamato Y, Naili S, Matsukawa M (2008b) Dependence of ultrasonic attenuation to bone mass and microstructure in bovine cortical bone. J Biomech 41:347–355

    Article  Google Scholar 

  • Schulte W et al (1983) Periotest: a new measurement process for periodontal function. Zahnarztl Mitt 73:1229–1230

    Google Scholar 

  • Seong WJ, Kim UK, Swift JQ, Hodges JS, Ko CC (2009) Correlations between physical properties of jawbone and dental implant initial stability. J Prosthet Dent 101:306–318

    Article  Google Scholar 

  • Serra G, Morais LS, Elias CN, Meyers MA, Andrade L, Muller C, Muller M (2008) Sequential bone healing of immediately loaded mini-implants. Am J Orthod Dentofacial Orthop 134:44–52

    Article  Google Scholar 

  • Shalabi MM, Wolke JGC, Cuijpers V, Jansen JA (2007) Evaluation of bone response to titanium-coated polymethyl methacrylate resin (PMMA) implants by X-ray tomography. J Mater Sci Mater Med 18:2033–2039

    Article  Google Scholar 

  • Souffrant R, Zietz C, Fritsche A, Kluess D, Mittelmeier W, Bader R (2012) Advanced material modelling in numerical simulation of primary acetabular press-fit cup stability. Comput Methods Biomech Biomed Eng 15:787–793

    Article  Google Scholar 

  • Turkyilmaz I, Aksoy U, McGlumphy EA (2008) Two alternative surgical techniques for enhancing primary implant stability in the posterior Maxilla: a clinical study including bone density, insertion torque, and resonance frequency analysis data. Clin Implant Dent Rel Res 10:231–237

    Google Scholar 

  • Turkyilmaz I, Tozum TF, Tumer C, Ozbek EN (2006) Assessment of correlation between computerized tomography values of the bone, and maximum torque and resonance frequency values at dental implant placement. J Oral Rehabil 33:881–888

    Article  Google Scholar 

  • Turkyilmaz I, Tumer C, Ozbek EN, Tozum TF (2007) Relations between the bone density values from computerized tomography, and implant stability parameters: a clinical study of 230 regular platform implants. J Clin Periodontol 34:716–722

    Article  Google Scholar 

  • Valderrama P, Oates TW, Jones AA, Simpson J, Schoolfield JD, Cochran D (2007) Evaluation of two different resonance frequency devices to detect implant stability: a clinical trial. J Periodont 78:262–272

    Article  Google Scholar 

  • Van Scotter DE, Wilson CJ (1991) The Periotest method for determining implant success. J Oral Implantol 17:410–413

    Google Scholar 

  • Vayron R, Barthel E, Mathieu V, Soffer E, Anagnostou F, Haiat G (2011) Variation of biomechanical properties of newly formed bone tissue determined by nanoindentation as a function of healing time. Comput Methods Biomech Biomed Eng 14:139–140

    Article  Google Scholar 

  • Vayron R, Barthel E, Mathieu V, Soffer E, Anagnostou F, Haiat G (2012) Nanoindentation measurements of biomechanical properties in mature and newly formed bone tissue surrounding an implant. J Biomech Eng 134:021007

    Article  Google Scholar 

  • Vayron R et al (2013) Variation of the ultrasonic response of a dental implant embedded in tricalcium silicate-based cement under cyclic loading. J Biomech 46:1162–1168

    Article  Google Scholar 

  • Vayron R, Mathieu V, Michel A, Haïat G (2014a) Assessment of in vitro dental implant primary stability using an ultrasonic method. Ultrasound Med Biol 40(12):2885–2894

  • Vayron R, Soffer E, Anagnostou F, Haïat G (2014b) Ultrasonic evaluation of dental implant osseointegration. J Biomech47(14):3562–3568

  • Vayron R, Matsukawa M, Mathieu V, Barthel E, Soffer E, Anagnostou F, Haiat G (2014c) Evolution of bone biomechanical properties at the micrometer scale around titanium implant as a function of healing time. Phys Med Biol 59:1389–1406

  • Viceconti M, Brusi G, Pancanti A, Cristofolini L (2006) Primary stability of an anatomical cementless hip stem: a statistical analysis. J Biomech 39:1169–1179. doi:10.1016/j.jbiomech.2005.03.024

    Article  Google Scholar 

  • Viceconti M, Monti L, Muccini R, Bernakiewicz M, Toni A (2001) Even a thin layer of soft tissue may compromise the primary stability of cementless hip stems. Clin Biomech 16:765–775

    Article  Google Scholar 

  • Wang JY, Tozzi G, Chen J, Contal F, Lupton C, Tong J (2010a) Bone–cement interfacial behaviour under mixed mode loading conditions. J Mech Behav Biomed Mater 3:392–398

    Article  Google Scholar 

  • Wang ZQ, Zhao ZH, Xue J, Song JL, Deng F, Yang P (2010b) Pullout strength of miniscrews placed in anterior mandibles of adult and adolescent dogs: a microcomputed tomographic analysis. Am J Orthod Dentofac Orthop 137:100–107

  • Winter W, Mohrle S, Holst S, Karl M (2010) Parameters of implant stability measurements based on resonance frequency and damping capacity: a comparative finite element analysis. Int J Oral Maxillofac Implants 25:532–539

  • Zhao LX, Xu ZR, Yang Z, Wei X, Tang T, Zhao ZH (2009) Orthodontic mini-implant stability in different healing times before loading: a microscopic computerized tomographic and biomechanical analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:196–202

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by French National Research Agency (ANR) through the PRTS Program (Project OsseoWave ANR-13-PRTS-0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Haïat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vayron, R., Nguyen, VH., Bosc, R. et al. Finite element simulation of ultrasonic wave propagation in a dental implant for biomechanical stability assessment. Biomech Model Mechanobiol 14, 1021–1032 (2015). https://doi.org/10.1007/s10237-015-0651-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-015-0651-7

Keywords

Navigation