1932

Abstract

Dental implants have become a routinely used technique in dentistry for replacing teeth. However, risks of failure are still experienced and remain difficult to anticipate. Multiscale phenomena occurring around the implant interface determine the implant outcome. The aim of this review is to provide an understanding of the biomechanical behavior of the interface between a dental implant and the region of bone adjacent to it (the bone–implant interface) as a function of the interface's environment. First, we describe the determinants of implant stability in relation to the different multiscale simulation approaches used to model the evolution of the bone–implant interface. Then, we review the various aspects of osseointegration in relation to implant stability. Next, we describe the different approaches used in the literature to measure implant stability in vitro and in vivo. Last, we review various factors affecting the evolution of the bone–implant interface properties.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071813-104854
2014-07-11
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/16/1/annurev-bioeng-071813-104854.html?itemId=/content/journals/10.1146/annurev-bioeng-071813-104854&mimeType=html&fmt=ahah

Literature Cited

  1. Hammerle CH, Wagner D, Bragger U, Lussi A, Karayiannis A. 1.  et al. 1995. Threshold of tactile sensitivity perceived with dental endosseous implants and natural teeth. Clin. Oral Implants Res. 6:83–90 [Google Scholar]
  2. Kim Y, Oh TJ, Misch CE, Wang HL. 2.  2005. Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale. Clin. Oral Implants Res. 16:26–35 [Google Scholar]
  3. Pjetursson BE, Bragger U, Lang NP, Zwahlen M. 3.  2007. Comparison of survival and complication rates of tooth-supported fixed dental prostheses (FDPs) and implant-supported FDPs and single crowns (SCs). Clin. Oral Implants Res. 18:Suppl. 397–113 [Google Scholar]
  4. Michiardi A, Helary G, Nguyen PC, Gamble LJ, Anagnostou F. 4.  et al. 2010. Bioactive polymer grafting onto titanium alloy surfaces. Acta Biomater. 6:667–75 [Google Scholar]
  5. Lee CK, Karl M, Kelly JR. 5.  2009. Evaluation of test protocol variables for dental implant fatigue research. Dent. Mater. 25:1419–25 [Google Scholar]
  6. Hansson S, Norton M. 6.  1999. The relation between surface roughness and interfacial shear strength for bone-anchored implants: a mathematical model. J. Biomech. 32:829–36 [Google Scholar]
  7. Vandrovcová M, Bačáková L. 7.  2011. Adhesion, growth and differentiation of osteoblasts on surface-modified materials developed for bone implants. Physiol. Res. 60:403–17 [Google Scholar]
  8. Variola F, Brunski JB, Orsini G, Tambasco de Oliveira P, Wazen R, Nanci A. 8.  2011. Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives. Nanoscale 3:335–53 [Google Scholar]
  9. Huja SS, Katona TR, Moore BK, Roberts WE. 9.  1998. Microhardness and anisotropy of the vital osseous interface and endosseous implant supporting bone. J. Orthop. Res. 16:54–60 [Google Scholar]
  10. Engler AJ, Humbert PO, Wehrle-Haller B, Weaver VM. 10.  2009. Multiscale modeling of form and function. Science 324:208–12 [Google Scholar]
  11. Discher DE, Mooney DJ, Zandstra PW. 11.  2009. Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–77 [Google Scholar]
  12. Haïat G, Padilla F, Svrcekova M, Chevalier Y, Pahr D. 12.  et al. 2009. Relationship between ultrasonic parameters and apparent trabecular bone elastic modulus: a numerical approach. J. Biomech. 42:2033–39 [Google Scholar]
  13. Sansalone V, Naili S, Bousson V, Bergot C, Peyrin F. 13.  et al. 2010. Determination of the heterogeneous anisotropic elastic properties of human femoral bone: from nanoscopic to organ scale. J. Biomech. 43:1857–63 [Google Scholar]
  14. Izaguirre JA, Chaturvedi R, Huang C, Cickovski T, Coffland J. 14.  et al. 2004. CompuCell, a multi-model framework for simulation of morphogenesis. Bioinformatics 20:1129–37 [Google Scholar]
  15. Vesentini S, Fitie CF, Montevecchi FM, Redaelli A. 15.  2005. Molecular assessment of the elastic properties of collagen-like homotrimer sequences. Biomech. Model. Mechanobiol. 3:224–34 [Google Scholar]
  16. Hellmich C, Kober C, Erdmann B. 16.  2008. Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible. Ann. Biomed. Eng. 36:108–22 [Google Scholar]
  17. Sansalone V, Kaiser J, Naili S, Lemaire T. 17.  2013. Interstitial fluid flow within bone canaliculi and electro-chemo-mechanical features of the canalicular milieu: a multi-parametric sensitivity analysis. Biomech. Model. Mechanobiol. 12:533–53 [Google Scholar]
  18. Brunski JB, Glantz P-O, Helms JA, Nanci A. 18.  2005. Transfer of mechanical load across the interface. The Osseointegration Book PI Brånemark 209–49 Berlin: Quintessence [Google Scholar]
  19. Sansalone V, Naili S, Bousson V, Bergot C, Peyrin F. 19.  et al. 2010. Determination of the heterogeneous anisotropic elastic properties of human femoral bone: from nanoscopic to organ scale. J. Biomech. 43:1857–63 [Google Scholar]
  20. Sansalone V, Bousson V, Naili S, Bergot C, Peyrin F. 20.  et al. 2012. Anatomical distribution of the degree of mineralization of bone tissue in human femoral neck: impact on biomechanical properties. Bone 50:876–84 [Google Scholar]
  21. Suquet P. 21.  1997. Continuum Micromechanics 377 CISM Lecture Notes) Wien, Austria: Springer
  22. Zaoui A. 22.  2002. Continuum micromechanics: survey. J. Eng. Mech. (ASCE) 128:808–16 [Google Scholar]
  23. Nemat-Nasser S, Hori M. 23.  1999. Micromechanics: Overall Properties of Heterogeneous Materials Amsterdam, Neth: North Holland
  24. Eshelby J. 24.  1957. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. Ser. A 241:376–96 [Google Scholar]
  25. Hellmich C, Barthelemy J, Dormieux L. 25.  2004. Mineral-collagen interactions in elasticity of bone ultrastructure—a continuum micromechanics approach. Eur. J. Mech. A Solids 23:783–810 [Google Scholar]
  26. Bernakiewicz M, Viceconti M. 26.  2002. The role of parameter identification in finite element contact analyses with reference to orthopaedic biomechanics applications. J. Biomech. 35:61–67 [Google Scholar]
  27. Viceconti M, Muccini R, Bernakiewicz M, Baleani M, Cristofolini L. 27.  2000. Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration. J. Biomech. 33:1611–18 [Google Scholar]
  28. Gupta S, Pal B, New AMR. 28.  2010. The effects of interfacial conditions and stem length on potential failure mechanisms in the uncemented resurfaced femur. Ann. Biomed. Eng. 38:2107–20 [Google Scholar]
  29. Rungsiyakull C, Li Q, Sun G, Li W, Swain MV. 29.  2010. Surface morphology optimization for osseointegration of coated implants. Biomaterials 31:7196–204 [Google Scholar]
  30. Bah MT, Nair PB, Browne M. 30.  2009. Mesh morphing for finite element analysis of implant positioning in cementless total hip replacements. Med. Eng. Phys. 31:1235–43 [Google Scholar]
  31. Simon U, Augat P, Ignatius A, Claes L. 31.  2003. Influence of the stiffness of bone defect implants on the mechanical conditions at the interface—a finite element analysis with contact. J. Biomech. 36:1079–86 [Google Scholar]
  32. Younesi M, Bahrololoom ME, Fooladfar H. 32.  2010. Development of wear resistant NFSS-HA novel biocomposites and study of their tribological properties for orthopaedic applications. J. Mech. Behav. Biomed. Mater. 3:178–88 [Google Scholar]
  33. Brånemark PI, Skalak R. 33.  1997. Definition of osseointegration. Osseointegration in Skeletal Reconstruction and Joint Replacement Brånemark PI, BL Rydevik, R Skalak, p. xi Chicago: Quintessence [Google Scholar]
  34. Miller BF, Keane CB. 34.  2003. Osseointegration. Miller-Keane Encyclopedia and Dictionary of Medicine, Nursing, and Allied Health. Philadelphia: Saunders, 7th. ed. [Google Scholar]
  35. Watzak G, Zechner W, Ulm C, Tangl S, Tepper G, Watzek G. 35.  2005. Histologic and histomorphometric analysis of three types of dental implants following 18 months of occlusal loading: a preliminary study in baboons. Clin. Oral Implants Res. 16:408–16 [Google Scholar]
  36. Deng B, Tan KB, Liu GR, Lu Y. 36.  2008. Influence of osseointegration degree and pattern on resonance frequency in the assessment of dental implant stability using finite element analysis. Int. J. Oral Maxillofac. Implants 23:1082–88 [Google Scholar]
  37. Tatarakis N, Bashutski J, Wang HL, Oh TJ. 37.  2012. Early implant bone loss: preventable or inevitable?. Implant Dent. 21:379–86 [Google Scholar]
  38. Hermann JS, Jones AA, Bakaeen LG, Buser D, Schoolfield JD, Cochran DL. 38.  2011. Influence of a machined collar on crestal bone changes around titanium implants: a histometric study in the canine mandible. J. Periodontol. 82:1329–38 [Google Scholar]
  39. Hermann JS, Schoolfield JD, Nummikoski PV, Buser D, Schenk RK, Cochran DL. 39.  2001. Crestal bone changes around titanium implants: a methodologic study comparing linear radiographic with histometric measurements. Int. J. Oral Maxillofac. Implants 16:475–85 [Google Scholar]
  40. Hermann JS, Buser D, Schenk RK, Cochran DL. 40.  2000. Crestal bone changes around titanium implants: a histometric evaluation of unloaded non-submerged and submerged implants in the canine mandible. J. Periodontol. 71:1412–24 [Google Scholar]
  41. Lin D, Li Q, Li W, Swain M. 41.  2009. Dental implant induced bone remodeling and associated algorithms. J. Mech. Behav. Biomed. Mater. 2:410–32 [Google Scholar]
  42. Nowzari H, Chee W, Yi K, Pak M, Chung WH, Rich S. 42.  2006. Scalloped dental implants: a retrospective analysis of radiographic and clinical outcomes of 17 NobelPerfect™ implants in 6 patients. Clin. Implant Dent. Relat. Res. 8:1–10 [Google Scholar]
  43. Kobayashi E, Ishihara O, Mataga I. 43.  2005. Effects of the placement of endosseous implants in vascularized bone grafts on bone union in beagle dogs. Int. J. Oral Maxillofac. Surg. 34:659–67 [Google Scholar]
  44. Ramírez-Fernández MP, Calvo-Guirado JL, Delgado-Ruiz RA, Maté-Sánchez del Val JE, Negri B, Diago MP. 44.  2013. Ultrastructural study by backscattered electron imaging and elemental microanalysis of biomaterial-to-bone interface and mineral degradation of bovine xenografts in maxillary sinus floor elevation. Clin. Oral Implants Res. 24:645–51 [Google Scholar]
  45. Roschger P, Paschalis EP, Fratzl P, Klaushofer K. 45.  2008. Bone mineralization density distribution in health and disease. Bone 42:456–66 [Google Scholar]
  46. Bunger MH, Foss M, Erlacher K, Li H, Zou X. 46.  et al. 2006. Bone nanostructure near titanium and porous tantalum implants studied by scanning small angle X-ray scattering. Eur. Cells Mater. 12:81–91 [Google Scholar]
  47. Seong WJ, Kim UK, Swift JQ, Hodges JS, Ko CC. 47.  2009. Correlations between physical properties of jawbone and dental implant initial stability. J. Prosthet. Dent. 101:306–18 [Google Scholar]
  48. Meunier A, Katz JL, Christel P, Sedel L. 48.  1988. A reflection scanning acoustic microscope for bone and bone-biomaterials interface studies. J. Orthop. Res. 6:770–75 [Google Scholar]
  49. Nomura T, Gold E, Powers MP, Shingaki S, Saito C, Katz JL. 49.  2006. A clinical case report: interface analysis of a successful well-functioning transmandibular implant from a cadaver mandible. J. Biomed. Mater. Res. B Appl. Biomater. 77:213–18 [Google Scholar]
  50. Ronold HJ, Ellingsen JE. 50.  2002. The use of a coin shaped implant for direct in situ measurement of attachment strength for osseointegrating biomaterial surfaces. Biomaterials 23:2201–9 [Google Scholar]
  51. Ronold HJ, Ellingsen JE, Lyngstadaas SP. 51.  2003. Tensile force testing of optimized coin-shaped titanium implant attachment kinetics in the rabbit tibiae. J. Mater. Sci. Mater. Med. 14:843–49 [Google Scholar]
  52. Vayron R, Barthel E, Mathieu V, Soffer J, Anagnostou F, Haïat G. 52.  2011. Variation of biomechanical properties of newly formed bone tissue determined by nanoindentation as a function of healing time. Comput. Methods Biomech. Biomed. Eng. 14:139–40 [Google Scholar]
  53. Vayron R, Karasinski P, Mathieu V, Michel A, Loriot D. 53.  et al. 2013. Variation of the ultrasonic response of a dental implant embedded in tricalcium silicate-based cement under cyclic loading. J. Biomech. 46:1162–68 [Google Scholar]
  54. Mathieu V, Fukui K, Matsukawa M, Kawabe M, Vayron R. 54.  et al. 2011. Micro-Brillouin scattering measurements in mature and newly formed bone tissue surrounding an implant. J. Biomech. Eng. 133:021006 [Google Scholar]
  55. Vayron R, Barthel E, Mathieu V, Soffer E, Anagnostou F, Haïat G. 55.  2012. Nanoindentation measurements of biomechanical properties in mature and newly formed bone tissue surrounding an implant. J. Biomech. Eng. 134:021007 [Google Scholar]
  56. Rabel A, Kohler SG, Schmidt-Westhausen AM. 56.  2007. Clinical study on the primary stability of two dental implant systems with resonance frequency analysis. Clin. Oral Investig. 11:257–65 [Google Scholar]
  57. Atsumi M, Park SH, Wang HL. 57.  2007. Methods used to assess implant stability: current status. Int. J. Oral Maxillofac. Implants 22:743–54 [Google Scholar]
  58. Golubovic V, Mihatovic I, Becker J, Schwarz F. 58.  2012. Accuracy of cone-beam computed tomography to assess the configuration and extent of ligature-induced peri-implantitis defects: a pilot study. Oral Maxillofac. Surg. 16:349–54 [Google Scholar]
  59. Misch C. 59.  2005. An implant is not a tooth: a comparison of periodontal indexes. Dental Implant Prosthetics C Misch 18–31 St. Louis, MO: Mosby [Google Scholar]
  60. Soardi CM, Zaffe D, Motroni A, Wang HL. 60.  2012. Quantitative comparison of cone beam computed tomography and microradiography in the evaluation of bone density after maxillary sinus augmentation: a preliminary study. Clin. Implant Dent. Relat. Res. In press. doi: 10.1111/cid.12016
  61. Potter HG, Nestor BJ, Sofka CM, Ho ST, Peters LE, Salvati EA. 61.  2004. Magnetic resonance imaging after total hip arthroplasty: evaluation of periprosthetic soft tissue. J. Bone Joint Surg. Am. 86:1947–54 [Google Scholar]
  62. Olive J, Aparicio C. 62.  1990. Periotest method as a measure of osseointegrated oral implant stability. Int. J. Oral Maxillofac. Implants 5:390–400 [Google Scholar]
  63. Manz MC, Morris HF, Ochi S. 63.  1992. An evaluation of the Periotest system. Part II: Reliability and repeatability of instruments. Implant Dent. 1:221–26 [Google Scholar]
  64. Schulte W, Lukas D. 64.  1992. The Periotest method. Int. Dent. J. 42:433–40 [Google Scholar]
  65. Meredith N, Friberg B, Sennerby L, Aparicio C. 65.  1998. Relationship between contact time measurements and PTV values when using the Periotest to measure implant stability. Int. J. Prosthodont. 11:269–75 [Google Scholar]
  66. Van Steenberghe D, Tricio J, Naert I, Nys M. 66.  1995. Damping characteristics of bone-to-implant interfaces: a clinical study with the Periotest device. Clin. Oral Implants Res. 6:31–39 [Google Scholar]
  67. Derhami K, Wolfaardt JF, Faulkner G, Grace M. 67.  1995. Assessment of the Periotest device in baseline mobility measurements of craniofacial implants. Int. J. Oral Maxillofac. Implants 10:221–29 [Google Scholar]
  68. Truhlar RS, Morris HF, Ochi S. 68.  2000. Stability of the bone-implant complex: results of longitudinal testing to 60 months with the Periotest device on endosseous dental implants. Ann. Periodontol. 5:42–55 [Google Scholar]
  69. Salvi GE, Lang NP. 69.  2004. Diagnostic parameters for monitoring peri-implant conditions. Int. J. Oral Maxillofac. Implants 19:Suppl.116–27 [Google Scholar]
  70. Meredith N. 70.  1999. Determination of the elastic modulus of resin based materials as a function of resonance frequency during polymerisation. Dent. Mater. 15:98–104 [Google Scholar]
  71. Balleri P, Cozzolino A, Ghelli L, Momicchioli G, Varriale A. 71.  2002. Stability measurements of osseointegrated implants using Osstell in partially edentulous jaws after 1 year of loading: a pilot study. Clin. Implant Dent. Relat. Res. 4:128–32 [Google Scholar]
  72. Gahleitner A, Monov G. 72.  2004. Assessment of bone quality: techniques, procedures, and limitations. Implants in Qualitatively Compromised Bone G Watzek 55–66 Chicago: Quintessence [Google Scholar]
  73. Meredith N, Alleyne D, Cawley P. 73.  1996. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin. Oral Implants Res. 7:261–67 [Google Scholar]
  74. Pagliani L, Sennerby L, Petersson A, Verrocchi D, Volpe S, Andersson P. 74.  2013. The relationship between resonance frequency analysis (RFA) and lateral displacement of dental implants: an in vitro study. J. Oral Rehabil. 40:221–27 [Google Scholar]
  75. Lachmann S, Laval JY, Jager B, Axmann D, Gomez-Roman G. 75.  et al. 2006. Resonance frequency analysis and damping capacity assessment. Part 2: Peri-implant bone loss follow-up: an in vitro study with the Periotest and Osstell instruments. Clin. Oral Implants Res. 17:80–84 [Google Scholar]
  76. Chan HL, El-Kholy K, Fu JH, Galindo-Moreno P, Wang HL. 76.  2010. Implant primary stability determined by resonance frequency analysis in surgically created defects: a pilot cadaver study. Implant Dent. 19:509–19 [Google Scholar]
  77. Nedir R, Bischof M, Szmukler-Moncler S, Bernard JP, Samson J. 77.  2004. Predicting osseointegration by means of implant primary stability. Clin. Oral Implants Res. 15:520–28 [Google Scholar]
  78. Friberg B, Sennerby L, Linden B, Grondahl K, Lekholm U. 78.  1999. Stability measurements of one-stage Brånemark implants during healing in mandibles: a clinical resonance frequency analysis study. Int. J. Oral Maxillofac. Surg. 28:266–72 [Google Scholar]
  79. Storani de Almeida M, Dias Maciel C, Pereira J. 79.  2007. Proposal for an ultrasonic tool to monitor the osseointegration of dental implants. Sensor 7:1224–37 [Google Scholar]
  80. Mathieu V, Soffer JE, Anagnostou F, Haïat G. 80.  2011. Ultrasonic evaluation of dental implant biomechanical stability: an in vitro study. Ultrasound Med. Biol. 37:262–70 [Google Scholar]
  81. Mathieu V, Soffer JE, Anagnostou F, Haïat G. 81.  2011. Numerical simulation of ultrasonic wave propagation for the evaluation of dental implant biomechanical stability. J. Acoust. Soc. Am. 129:4062–72 [Google Scholar]
  82. Vayron R, Mathieu V, Michel A, Loriot D, Haïat G. 82.  2014. Assessment of the in vitro dental implant primary stability using an ultrasonic method. Ultrasound Med. Biol. In press
  83. Mathieu V, Soffer JE, Anagnostou F, Haïat G. 83.  2012. Influence of healing time on the ultrasonic response of the bone-implant interface. Ultrasound Med. Biol. 38:611–18 [Google Scholar]
  84. Friberg B, Sennerby L, Roos J, Johansson P, Strid CG, Lekholm U. 84.  1995. Evaluation of bone-density using cutting resistance measurements and microradiography: an in-vitro study in pig ribs. Clin. Oral Implants Res. 6:164–71 [Google Scholar]
  85. O'Sullivan D, Sennerby L, Jagger D, Meredith N. 85.  2004. A comparison of two methods of enhancing implant primary stability. Clin. Implant Dent. Relat. Res. 6:48–57 [Google Scholar]
  86. Makary C, Rebaudi A, Sammartino G, Naaman N. 86.  2012. Implant primary stability determined by resonance frequency analysis: correlation with insertion torque, histologic bone volume, and torsional stability at 6 weeks. Implant Dent. 21:474–80 [Google Scholar]
  87. Cannizzaro G, Leone M, Ferri V, Viola P, Federico G, Esposito M. 87.  2012. Immediate loading of single implants inserted flapless with medium or high insertion torque: a 6-month follow-up of a split-mouth randomised controlled trial. Eur. J. Oral Implantol. 5:333–42 [Google Scholar]
  88. Johansson CB, Sennerby L, Albrektsson T. 88.  1991. A removal torque and histomorphometric study of bone tissue reactions to commercially pure titanium and Vitallium® implants. Int. J. Oral Maxillofac. Implants 6:437–41 [Google Scholar]
  89. Buser D, Nydegger T, Hirt HP, Cochran DL, Nolte LP. 89.  1998. Removal torque values of titanium implants in the maxilla of miniature pigs. Int. J. Oral Maxillofac. Implants 13:611–19 [Google Scholar]
  90. Sullivan DY, Sherwood RL, Collins TA, Krogh PH. 90.  1996. The reverse-torque test: a clinical report. Int. J. Oral Maxillofac. Implants 11:179–85 [Google Scholar]
  91. Meredith N. 91.  1998. Assessment of implant stability as a prognostic determinant. Int. J. Prosthodont. 11:491–501 [Google Scholar]
  92. Brånemark R, Ohrnell LO, Skalak R, Carlsson L, Brånemark PI. 92.  1998. Biomechanical characterization of osseointegration: an experimental in vivo investigation in the beagle dog. J. Orthop. Res. 16:61–69 [Google Scholar]
  93. Shirazi-Adl A. 93.  1992. Finite element stress analysis of a push-out test. Part 1: Fixed interface using stress compatible elements. J. Biomech. Eng. 114:111–18 [Google Scholar]
  94. Skripitz R, Aspenberg P. 94.  1998. Tensile bond between bone and titanium: a reappraisal of osseointegration. Acta Orthop. Scand. 69:315–19 [Google Scholar]
  95. Maugis D. 95.  2000. Frictionless elastic contact. Contact Adhesion and Rupture of Elastic Solids203–344 Berlin: Springer [Google Scholar]
  96. Mathieu V, Vayron R, Barthel E, Dalmas D, Soffer JE. 96.  et al. 2012. Mode III cleavage of a coin-shaped titanium implant in bone: effect of friction and crack propagation. J. Mech. Behav. Biomed. Mater. 8:194–203 [Google Scholar]
  97. Wazen RM, Currey JA, Guo H, Brunski JB, Helms JA, Nanci A. 97.  2013. Micromotion-induced strain fields influence early stages of repair at bone-implant interfaces. Acta Biomater. 9:6663–74 [Google Scholar]
  98. Al-Nawas B, Wagner W, Grotz KA. 98.  2006. Insertion torque and resonance frequency analysis of dental implant systems in an animal model with loaded implants. Int. J. Oral Maxillofac. Implants 21:726–32 [Google Scholar]
  99. Brunski JB. 99.  2003. Biomechanical aspects of oral/maxillofacial implants. Int. J. Prosthodont. 16:30–32; 47–51 [Google Scholar]
  100. Bozkaya D, Muftu S, Muftu A. 100.  2004. Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. J. Prosthet. Dent. 92:523–30 [Google Scholar]
  101. Burr DB, Martin RB, Schaffler MB, Radin EL. 101.  1985. Bone remodeling in response to in vivo fatigue microdamage. J. Biomech. 18:189–200 [Google Scholar]
  102. Mori S, Burr DB. 102.  1993. Increased intracortical remodeling following fatigue damage. Bone 14:103–9 [Google Scholar]
  103. Brunski JB, Moccia AF Jr, Pollack SR, Korostoff E, Trachtenberg DI. 103.  1979. The influence of functional use of endosseous dental implants on the tissue-implant interface. I. Histological aspects. J. Dent. Res. 58:1953–69 [Google Scholar]
  104. Brunski J. 104.  1997. Biomechanics of dental implants. Implants in Dentistry M Block, JN Kent, LR Guerra 63–71 Philadelphia: Saunders [Google Scholar]
  105. Søballe K, Hansen ES, Rasmussen HB, Jørgensen PH, Bunger C. 105.  1992. Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions. J. Orthop. Res. 10:285–99 [Google Scholar]
  106. Brunski JB, Currey JA, Helms JA, Leucht P, Nanci A, Wazen R. 106.  2011. Implant geometry, interfacial strain, and mechanobiology of oral implants revisited. Proceedings of the First P-I Brånemark Scientific Symposium Gothenburg 2009 R Gottlander, D Van Steenberghe 45–59 Surrey, UK: Quintessence
  107. Perren SM. 107.  2002. Evolution of the internal fixation of long bone fractures: the scientific basis of biological internal fixation: choosing a new balance between stability and biology. J. Bone Joint Surg. Br. 84:1093–110 [Google Scholar]
  108. Trisi P, Perfetti G, Baldoni E, Berardi D, Colagiovanni M, Scogna G. 108.  2009. Implant micromotion is related to peak insertion torque and bone density. Clin. Oral Implants Res. 20:467–71 [Google Scholar]
  109. Nkenke E, Hahn M, Weinzierl K, Radespiel-Tröger M, Neukam FW, Engelke K. 109.  2003. Implant stability and histomorphometry: a correlation study in human cadavers using stepped cylinder implants. Clin. Oral Implants Res. 14:601–9 [Google Scholar]
  110. Newman MG, Takei H, Klokkevold PR, Carranza FA. 110.  2006. Carrannza's Clinical Periodontology St. Louis, MO: Saunders, 10th. ed.
  111. Cosyn J, Sabzevar MM, De Bruyn H. 111.  2012. Predictors of inter-proximal and midfacial recession following single implant treatment in the anterior maxilla: a multivariate analysis. J. Clin. Periodontol. 39:895–903 [Google Scholar]
  112. Fu JH, Hsu YT, Wang HL. 112.  2012. Identifying occlusal overload and how to deal with it to avoid marginal bone loss around implants. Eur. J. Oral Implantol. 5:Suppl.S91–103 [Google Scholar]
  113. Spray JR, Black CG, Morris HF, Ochi S. 113.  2000. The influence of bone thickness on facial marginal bone response: stage 1 placement through stage 2 uncovering. Ann. Periodontol. 5:119–28 [Google Scholar]
  114. Zetu L, Wang HL. 114.  2005. Management of inter-dental/inter-implant papilla. J. Clin. Periodontol. 32:831–39 [Google Scholar]
  115. Tarnow DP, Cho SC, Wallace SS. 115.  2000. The effect of inter-implant distance on the height of inter-implant bone crest. J. Periodontol. 71:546–49 [Google Scholar]
  116. Cumbo C, Marigo L, Somma F, La Torre G, Minciacchi I, D'Addona A. 116.  2013. Implant platform switching concept: a literature review. Eur. Rev. Med. Pharmacol. Sci. 17:392–97 [Google Scholar]
  117. Araujo MG, Sukekava F, Wennstrom JL, Lindhe J. 117.  2005. Ridge alterations following implant placement in fresh extraction sockets: an experimental study in the dog. J. Clin. Periodontol. 32:645–52 [Google Scholar]
  118. Hsu YT, Shieh CH, Wang HL. 118.  2012. Using soft tissue graft to prevent mid-facial mucosal recession following immediate implant placement. J. Int. Acad. Periodontol. 14:76–82 [Google Scholar]
  119. Sul YT, Kang BS, Johansson C, Um HS, Park CJ, Albrektsson T. 119.  2009. The roles of surface chemistry and topography in the strength and rate of osseointegration of titanium implants in bone. J. Biomed. Mater. Res. A 89:942–50 [Google Scholar]
  120. Sennerby L, Meredith N. 120.  2008. Implant stability measurements using resonance frequency analysis: biological and biomechanical aspects and clinical implications. Periodontol. 2000 47:51–66 [Google Scholar]
  121. Nergiz I, Arpak N, Bostanci H, Scorziello TM, Schmage P. 121.  2009. Stability of loaded and unloaded implants with different surfaces. Int. J. Oral Maxillofac. Implants 24:289–98 [Google Scholar]
  122. Neugebauer J, Weinlander M, Lekovic V, Von Berg KHL, Zoeller JE. 122.  2009. Mechanical stability of immediately loaded implants with various surfaces and designs: a pilot study in dogs. Int. J. Oral Maxillofac. Implants 24:1083–92 [Google Scholar]
  123. Liu C, Brunski JB. 123.  1999. Axial and lateral mobility of standard versus experimental Brånemark fixtures. Presented at Meet. Int. Assoc. Dent. Res. (IADR), Mar. 12, Vancouver, BC
  124. O'Sullivan D, Sennerby L, Meredith N. 124.  2000. Measurements comparing the initial stability of five designs of dental implants: a human cadaver study. Clin. Implant Dent. Relat. Res. 2:85–92 [Google Scholar]
  125. O'Sullivan D, Sennerby L, Meredith N. 125.  2004. Influence of implant taper on the primary and secondary stability of osseointegrated titanium implants. Clin. Oral Implants Res. 15:474–80 [Google Scholar]
  126. Sakoh J, Wahlmann U, Stender E, Al-Nawas B, Wagner W. 126.  2006. Primary stability of a conical implant and a hybrid, cylindric screw-type implant in vitro. Int. J. Oral Maxillofac. Implants 21:560–66 [Google Scholar]
  127. Rompen E, DaSilva D, Hockers T, Lundgren A-K, Gottlow J. 127.  et al. 2001. Influence of implant design on primary fit and stability: a RFA and histological comparison of Mk III and Mk IV Brånemark implants in the dog mandible. Appl. Osseointegration Res. 2:9–11 [Google Scholar]
  128. Ostman PO, Hellman M, Wendelhag I, Sennerby L. 128.  2006. Resonance frequency analysis measurements of implants at placement surgery. Int. J. Prosthodont. 19:77–84 [Google Scholar]
  129. Akca K, Chang TL, Tekdemir I, Fanuscu MI. 129.  2006. Biomechanical aspects of initial intraosseous stability and implant design: a quantitative micro-morphometric analysis. Clin. Oral Implants Res. 17:465–72 [Google Scholar]
  130. Beer A, Gahleitner A, Holm A, Tschabitscher M, Homolka P. 130.  2003. Correlation of insertion torques with bone mineral density from dental quantitative CT in the mandible. Clin. Oral Implants Res. 14:616–20 [Google Scholar]
  131. Tabassum A, Meijer GJ, Wolke JG, Jansen JA. 131.  2009. Influence of the surgical technique and surface roughness on the primary stability of an implant in artificial bone with a density equivalent to maxillary bone: a laboratory study. Clin. Oral Implants Res. 20:327–32 [Google Scholar]
  132. Shalabi MM, Gortemaker A, Van't Hof MA, Jansen JA, Creugers NH. 132.  2006. Implant surface roughness and bone healing: a systematic review. J. Dent. Res. 85:496–500 [Google Scholar]
  133. Norton M. 133.  2013. Primary stability versus viable constraint—a need to redefine. Int. J. Oral Maxillofac. Implants 28:19–21 [Google Scholar]
  134. Halldin A, Jimbo R, Johansson CB, Wennerberg A, Jacobsson M. 134.  et al. 2011. The effect of static bone strain on implant stability and bone remodeling. Bone 49:783–89 [Google Scholar]
  135. Duyck J, Corpas L, Vermeiren S, Ogawa T, Quirynen M. 135.  et al. 2010. Histological, histomorphometrical, and radiological evaluation of an experimental implant design with a high insertion torque. Clin. Oral Implants Res. 21:877–84 [Google Scholar]
  136. Trisi P, Todisco M, Consolo U, Travaglini D. 136.  2011. High versus low implant insertion torque: a histologic, histomorphometric, and biomechanical study in the sheep mandible. Int. J. Oral Maxillofac. Implants 26:837–49 [Google Scholar]
  137. Khayat PG, Arnal HM, Tourbah BI, Sennerby L. 137.  2013. Clinical outcome of dental implants placed with high insertion torques (up to 176 Ncm). Clin. Implant Dent. Relat. Res. 15:227–33 [Google Scholar]
  138. Esposito M, Thomsen P, Ericson LE, Lekholm U. 138.  1999. Histopathologic observations on early oral implant failures. Int. J. Oral Maxillofac. Implants 14:798–810 [Google Scholar]
  139. Zarb GA, Schmitt A. 139.  1994. Osseointegration for elderly patients: the Toronto study. J. Prosthet. Dent. 72:559–68 [Google Scholar]
  140. Goodburn EA, Ross DA. 140. World Health Organ. (WHO) 1995. A Picture of Health? A Review and Annotated Bibliography of the Health of Young People in Developing Countries Geneva: WHO
  141. Kerstein RB. 141.  2001. Nonsimultaneous tooth contact in combined implant and natural tooth occlusal schemes. Pract. Proc. Aesthet. Dent. 13:751–55 [Google Scholar]
  142. Tsolaki IN, Madianos PN, Vrotsos JA. 142.  2009. Outcomes of dental implants in osteoporotic patients: a literature review. J. Prosthodont. 18:309–23 [Google Scholar]
  143. Hwang D, Wang HL. 143.  2006. Medical contraindications to implant therapy. Part I: Absolute contraindications. Implant Dent. 15:353–60 [Google Scholar]
  144. Tsao C, Darby I, Ebeling PR, Walsh K, O'Brien-Simpson N. 144.  et al. 2013. Oral health risk factors for bisphosphonate-associated jaw osteonecrosis. J. Oral Maxillofac. Surg. 71:1360–66 [Google Scholar]
  145. Ruggiero SL, Dodson TB, Assael LA, Landesberg R, Marx RE, Mehrotra B. 145.  2009. American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaw—2009 update. Aust. Endod. J. 35:119–30 [Google Scholar]
  146. Anderson L, Meraw S, Al-Hezaimi K, Wang HL. 146.  2013. The influence of radiation therapy on dental implantology. Implant Dent. 22:31–38 [Google Scholar]
  147. Moy PK, Medina D, Shetty V, Aghaloo TL. 147.  2005. Dental implant failure rates and associated risk factors. Int. J. Oral Maxillofac. Implants 20:569–77 [Google Scholar]
  148. Alsaadi G, Quirynen M, Komarek A, Van Steenberghe D. 148.  2007. Impact of local and systemic factors on the incidence of oral implant failures, up to abutment connection. J. Clin. Periodontol. 34:610–17 [Google Scholar]
  149. Bain CA, Weng D, Meltzer A, Kohles SS, Stach RM. 149.  2002. A meta-analysis evaluating the risk for implant failure in patients who smoke. Compend. Contin. Educ. Dent. 23:695–704 [Google Scholar]
  150. Weyant RJ. 150.  1994. Characteristics associated with the loss and peri-implant tissue health of endosseous dental implants. Int. J. Oral Maxillofac. Implants 9:95–102 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071813-104854
Loading
/content/journals/10.1146/annurev-bioeng-071813-104854
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error