Skip to main content

Advertisement

Log in

Repair bond strength of different CAD-CAM ceramics after various surface treatments combined with laser irradiation

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effect of different surface treatments combined with laser irradiation on the shear bond strength of different CAD-CAM ceramics to composite resin. A total of hundred forty-seven ceramic specimens with thicknesses of 2.5 mm were prepared from three different CAD-CAM ceramics (an yttrium oxide partially stabilized tetragonal zirconia polycrystal (Y-TZP); a zirconia-reinforced lithium silicate glass ceramic (ZLS); and a lithium disilicate–strengthened lithium aluminosilicate glass ceramic (LD-LAS)) and subjected to seven groups of treatment (n = 7): (1) control (no treatment), (2) Er:YAG laser irradiation, (3) Nd:YAG laser irradiation, (4) etching with hydrofluoric acid (HFA), (5) Er:YAG + HFA, (6) Nd:YAG + HFA, and (7) sandblasting. After surface treatment procedures, a ceramic primer (Clearfil Ceramic Primer Plus, Kuraray, Japan) was applied to the ceramics. Bonding agent (Single Bond Universal Adhesive, 3 M ESPE, USA) was then applied, and the composite resin (Estelite Sigma Quick, Kuraray, Japan) was layered on the ceramic surfaces. The shear bond strength test was performed using a universal testing machine at a load of 0.5 mm/min. Data were analyzed by 2-way analysis of variance (ANOVA), and the Bonferroni correction was used for pairwise comparisons (α = 0.05). Compared to the bond strength of the control group, irradiation by Er:YAG and Nd:YAG lasers alone improved the bond strength of the composite resin to the Y-TZP (P < 0.001) but did not change the bond strength of composite resin to the ZLS and LD-LAS (P > 0.05). Compared to the bond strength of the control group, etching with HFA alone increased the bond strength of the composite resin to the ZLS and LD-LAS (P < 0.001) but did not affect the bond strength of the composite resin to the Y-TZP (P > 0.05). The highest bond strength of ZLS was obtained using HFA + Er:YAG, and the highest bond strength for LD-LAS was obtained using HFA + Nd:YAG. It was concluded that Er:YAG and Nd:YAG laser treatments presented the highest repair bond strength between the composite resin and Y-TZP ceramics. Er:YAG and Nd:YAG laser treatments in conjuction with HFA presented the highest repair bond strength between the composite resin and the glassy ceramics, ZLS, and LD + LAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The dataset supporting the conclusions of this article is available upon request to the corresponding author, Elif Aydogan Ayaz.

References

  1. Denry I, Kelly JR (2014) Emerging ceramic-based materials for dentistry. J Dent Res 93:1235–1242. https://doi.org/10.1177/0022034514553627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Al-Haj Husain N, Walther L, Özcan M, Brägger U, Joda T (2021) Effect of thickness and shade of resin and ceramic-based hybrid materials on color masking abilities and optical performance of CAD/CAM materials. Eur J Prosthodont Restor Dent 29:14–21. https://doi.org/10.1922/EJPRD_2058Al-HajHusain08

    Article  CAS  PubMed  Google Scholar 

  3. Turp V, Akgungor G, Sen D, Tuncelli B (2014) Evaluation of surface topography of zirconia ceramic after Er:YAG laser etching. Photomed Laser Surg 32:533–539. https://doi.org/10.1089/pho.2014.3730

    Article  CAS  PubMed  Google Scholar 

  4. Christel P, Meunier A, Heller M, Torre JP, Peille CN (1989) Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia. J Biomed Mater Res 23:45–61. https://doi.org/10.1002/jbm.820230105

    Article  CAS  PubMed  Google Scholar 

  5. Zarone F, Russo S, Sorrentino R (2011) From porcelain-fused-to-metal to zirconia: clinical and experimental considerations. Dent Mater 27:83–96. https://doi.org/10.1016/j.dental.2010.10.024

    Article  CAS  PubMed  Google Scholar 

  6. Akyil MS, Uzun IH, Bayindir F (2010) Bond strength of resin cement to yttrium-stabilized tetragonal zirconia ceramic treated with air abrasion, silica coating, and laser irradiation. Photomed Laser Surg 28:801–808. https://doi.org/10.1089/pho.2009.2697

    Article  CAS  PubMed  Google Scholar 

  7. Sato TP, Anami LC, Melo RM, Valandro LF, Bottino MA (2016) Effects of surface treatments on the bond strength between resin cement and a new zirconia-reinforced lithium silicate ceramic. Oper Dent 41:284–292. https://doi.org/10.2341/14-357-L

    Article  CAS  PubMed  Google Scholar 

  8. Ustun S, Ayaz EA (2021) Effect of different cement systems and aging on the bond strength of chairside CAD-CAM ceramics. J Prosthet Dent 125:334–339. https://doi.org/10.1016/j.prosdent.2019.11.025

    Article  CAS  PubMed  Google Scholar 

  9. Al-Haj Husain N, Sonderegger S, Özcan M, Brägger U, Joda T (2020) In vitro static and fatigue behavior of ceramic occlusal veneers using CAD/CAM. Eur J Prosthodont Restor Dent 28:113–120. https://doi.org/10.1922/EJPRD_2018Husain08

    Article  CAS  PubMed  Google Scholar 

  10. Gul P, Altınok-Uygun L (2020) Repair bond strength of resin composite to three aged CAD/CAM blocks using different repair systems. J Adv Prosthodont 12:131–139. https://doi.org/10.4047/jap.2020.12.3.131

    Article  PubMed  PubMed Central  Google Scholar 

  11. Quinn GD, Giuseppetti AA, Hoffman KH (2014) Chipping fracture resistance of dental CAD/CAM restorative materials: part I–procedures and results. Dent Mater 30:e99–e111. https://doi.org/10.1016/j.dental.2014.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Üstün Ö, Büyükhatipoğlu IK, Seçilmiş A (2018) Shear bond strength of repair systems to new CAD/CAM restorative materials. J Prosthodont 27:748–754. https://doi.org/10.1111/jopr.12564

    Article  PubMed  Google Scholar 

  13. Kumchai H, Juntavee P, Sun AF, Nathanson D (2020) Comparing the repair of veneered zirconia crowns with ceramic or composite resin: an in vitro study. Dent J (Basel) 8:37. https://doi.org/10.3390/dj8020037

    Article  PubMed  Google Scholar 

  14. Al-Turki L, Merdad Y, Abuhaimed TA, Sabbahi D, Almarshadi M, Aldabbagh R (2020) Repair bond strength of dental computer-aided design/computer-aided manufactured ceramics after different surface treatments. J Esthet Restor Dent 32:726–733. https://doi.org/10.1111/jerd.12635

    Article  PubMed  Google Scholar 

  15. Curtis AR, Wright AJ, Fleming GJ (2006) The influence of surface modification techniques on the performance of a Y-TZP dental ceramic. J Dent 34:195–206. https://doi.org/10.1016/j.jdent.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  16. Amaral R, Ozcan M, Bottino MA, Valandro LF (2006) Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: the effect of surface conditioning. Dent Mater 22:283–290. https://doi.org/10.1016/j.dental.2005.04.021

    Article  CAS  PubMed  Google Scholar 

  17. Valandro LF, Della Bona A, Antonio Bottino M, Neisser MP (2005) The effect of ceramic surface treatment on bonding to densely sintered alumina ceramic. J Prosthet Dent 93:253–259. https://doi.org/10.1016/j.prosdent.2004.12.002

    Article  CAS  PubMed  Google Scholar 

  18. Blatz MB, Sadan A, Kern M (2003) Resin-ceramic bonding: a review of the literature. J Prosthet Dent 89:268–274. https://doi.org/10.1067/mpr.2003.50

    Article  CAS  PubMed  Google Scholar 

  19. Tanaka R, Fujishima A, Shibata Y, Manabe A, Miyazaki T (2008) Cooperation of phosphate monomer and silica modification on zirconia. J Dent Res 87:666–670. https://doi.org/10.1177/154405910808700705

    Article  CAS  PubMed  Google Scholar 

  20. Ulgey M, Gorler O, Karahan Gunduz C (2021) Effect of laser modalities on shear bond strength of composite superstructure to zirconia and PEEK infrastructures: an in vitro study. Odontology 109:845–853. https://doi.org/10.1007/s10266-021-00608-1

    Article  CAS  PubMed  Google Scholar 

  21. Kara O, Kara HB, Tobi ES, Ozturk AN, Kilic HS (2015) Effect of various lasers on the bond strength of two zirconia ceramics. Photomed Laser Surg 33:69–76. https://doi.org/10.1089/pho.2014.3841

    Article  CAS  PubMed  Google Scholar 

  22. Ataol AS, Ergun G (2018) Effects of surface treatments on repair bond strength of a new CAD/CAM ZLS glass ceramic and two different types of CAD/CAM ceramics. J Oral Sci 60:201–211. https://doi.org/10.2334/josnusd.17-0109

    Article  CAS  PubMed  Google Scholar 

  23. Cavalcanti AN, Foxton RM, Watson TF, Oliveira MT, Giannini M, Marchi GM (2009) Bond strength of resin cements to a zirconia ceramic with different surface treatments. Oper Dent 34:280–287. https://doi.org/10.2341/08-80

    Article  PubMed  Google Scholar 

  24. Usumez A, Hamdemirci N, Koroglu BY, Simsek I, Parlar O, Sari T (2013) Bond strength of resin cement to zirconia ceramic with different surface treatments. Lasers Med Sci 28:259–266. https://doi.org/10.1007/s10103-012-1136-x

    Article  PubMed  Google Scholar 

  25. Akın H, Ozkurt Z, Kırmalı O, Kazazoglu E, Ozdemir AK (2011) Shear bond strength of resin cement to zirconia ceramic after aluminum oxide sandblasting and various laser treatments. Photomed Laser Surg 29:797–802. https://doi.org/10.1089/pho.2011.3039

    Article  CAS  PubMed  Google Scholar 

  26. Moretto SG, de Freitas PM, Inca HEC, Cesar PF, Bello-Silva MS, de Paula EC (2021) Influence of Er:YAG laser surface treatment on flexural and bond strengths to glass-infiltrated zirconia-reinforced ceramic. Lasers Med Sci 36:1487–1495. https://doi.org/10.1007/s10103-020-03205-w

    Article  PubMed  Google Scholar 

  27. Viskic J, Jokic D, Jakovljevic S, Bergman L, Ortolan SM, Mestrovic S, Mehulic K (2018) Scanning electron microscope comparative surface evaluation of glazed-lithium disilicate ceramics under different irradiation settings of Nd:YAG and Er:YAG lasers. Angle Orthod 88:75–81. https://doi.org/10.2319/062017-408.1

    Article  PubMed  Google Scholar 

  28. Borges GA, Sophr AM, de Goes MF, Sobrinho LC, Chan DC (2003) Effect of etching and airborne particle abrasion on the microstructure of different dental ceramics. J Prosthet Dent 89:479–488. https://doi.org/10.1016/S0022-3913(02)52704-9

    Article  CAS  PubMed  Google Scholar 

  29. Lin Y, Song X, Chen Y, Zhu Q, Zhang W (2013) Effect of Er:YAG laser irradiation on bonding property of zirconia ceramics to resin cement. Photomed Laser Surg 31:619–625. https://doi.org/10.1089/pho.2013.3489

    Article  CAS  PubMed  Google Scholar 

  30. Altan B, Cinar S, Tuncelli B (2019) Evaluation of shear bond strength of zirconia-based monolithic CAD-CAM materials to resin cement after different surface treatments. Niger J Clin Pract 22:1475–1482. https://doi.org/10.4103/njcp.njcp_157_19

    Article  CAS  PubMed  Google Scholar 

  31. Kirmali O, Kustarci A, Kapdan A, Er K (2015) Efficacy of surface roughness and bond strength of Y-TZP zirconia after various pre-treatments. Photomed Laser Surg 33:15–21. https://doi.org/10.1089/pho.2014.3825

    Article  CAS  PubMed  Google Scholar 

  32. Cavalcanti AN, Pilecki P, Foxton RM, Watson TF, Oliveira MT, Gianinni M, Marchi GM (2009) Evaluation of the surface roughness and morphologic features of Y-TZP ceramics after different surface treatments. Photomed Laser Surg 27:473–479. https://doi.org/10.1089/pho.2008.2293

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Concept, S.Ü.A and E.A.A.; design, S.Ü.A.; supervision, E.A.A.; resources, S.Ü.A.; data collection and/or processing, S.Ü.A. and E.A.A.; analysis and/or interpretation, E.A.A.; literature search, S.Ü.A.; writing manuscript, S.Ü.A. and E.A.A.; critical review, E.A.A

Corresponding author

Correspondence to Elif Aydoğan Ayaz.

Ethics declarations

Ethical approval

Not applicable in this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aladağ, S.Ü., Ayaz, E.A. Repair bond strength of different CAD-CAM ceramics after various surface treatments combined with laser irradiation. Lasers Med Sci 38, 51 (2023). https://doi.org/10.1007/s10103-023-03715-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03715-3

Keywords

Navigation