Skip to main content
Log in

Model testing of the spatial–temporal evolution of a landslide failure

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

This paper outlines the spatial–temporal evolution of a landslide. A multiple monitoring system that consists of a three-dimensional (3D) laser scanner, a particle image velocimeter (PIV), earth pressure cells (PCs), and a thermal infrared (TIR) imager were designed and employed for a 1 g landslide model case study. The displacement, velocity, lateral earth pressure and surface temperature were recorded during the evolution of a landslide. Four stages of evolution were identified using the measured displacements: the initial stage, the uniform stage, the accelerated stage and the failure stage. The deformation, lateral earth pressure and surface temperature of a landslide were monitored during each stage. The distribution of the lateral force with depth varied significantly during movement, and the depth of the maximum soil pressure increased with movement. The surface temperature of the moving mass was significantly higher than the surface temperature of the nonmoving mass. The average change in surface temperature showed a significant increase in surface temperature followed by a decrease in surface temperature prior to failure. This study provides procedures and solutions for landslide monitoring, interpreting landslide initiation and detecting landslides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abellán A, Vilaplana JM, Martínez J (2006) Application of a long-range terrestrial laser scanner to a detailed rockfall study at Vall de Núria (Eastern Pyrenees, Spain). Eng Geol 88:136–148. doi:10.1016/j.enggeo.2006.09.012

    Article  Google Scholar 

  • Abellán A, Vilaplana JM, Calvet J, Blanchard J (2010) Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology 119:162–171. doi:10.1016/j.geomorph.2010.03.016

    Article  Google Scholar 

  • Angeli MG, Pasuto A, Silvano S (2000) A critical review of landslide monitoring experiences. Eng Geol 55(3):133–147. doi:10.1016/S0013-7952(99)00122-2

    Article  Google Scholar 

  • Baba HO, Peth S (2012) Large scale soil box test to investigate soil deformation and creep movement on slopes by particle image velocimetry (PIV). Soil Tillage Res 125:38–43. doi:10.1016/j.still.2012.05.021

    Article  Google Scholar 

  • Bridgman PW (1922) Dimensional analysis. Yale University Press, New Haven

    Google Scholar 

  • Cao Y, Yin KL, Alexander D, Zhou C (2015) Using an extreme learning machine to predict the displacement of step-like landslides in relation to controlling factors. Landslides. doi:10.1007/s10346-015-0596-z

    Google Scholar 

  • Casagli N, Catani F, Del Ventisette C, Luzi G (2010) Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides 7(3):291–301. doi:10.1007/s10346-010-0215-y

    Article  Google Scholar 

  • Casson B, Delacourt C, Baratoux D, Allemand P (2003) Seventeen years of the “La Clapière” landslide evolution analysed from ortho-rectified aerial photographs. Eng Geol 68(1–2):123–139. doi:10.1016/s0013-7952(02)00201-6

    Article  Google Scholar 

  • Cheng SG, Luo XQ (2010) Research on theory and application of landslide model test. J Coal Sci Eng (China) 16:140–143

    Article  Google Scholar 

  • Corominas J, Moya J, Lloret A, Gili JA, Angeli MG, Pasuto A (2000) Measurement of landslide displacements using a wire extensometer. Eng Geol 55:149–166

    Article  Google Scholar 

  • Corsini A, Pasuto M, Soldati A, Zannoni A (2005) Field monitoring of the Corvara landslide (Dolomites, Italy) and its relevance for hazard assessment. Geomorphology 66(1–4):149–165

    Article  Google Scholar 

  • De Bruyn D, Thimus JF (1996) The influence of temperature on mechanical characteristics of Boom clay: the results of an initial laboratory programme. Eng Geol 41(1–4):117–126. doi:10.1016/0013-7952(95)00029-1

    Article  Google Scholar 

  • Fan XM, Xu Q, Zhang ZY, Meng DS, Tang R (2009) The genetic mechanism of a translational landslide. Bull Eng Geol Environ 68:231–244

    Article  Google Scholar 

  • Fanti R, Gigli G, Lombardi L, Tapete D, Canuti P (2013) Terrestrial laser scanning for rockfall stability analysis in the cultural heritage site of Pitigliano (Italy). Landslides 10:409–420. doi:10.1007/s10346-012-0329-5

    Article  Google Scholar 

  • Feng B, Wang JX, Tian PZ, Si PF (2015) Experimental study on rainfall-induced three-dimensional deformation characteristics of a slope. Adv Mater Res 1065–1069:133–137. doi:10.4028/www.scientific.net/AMR.1065-1069.133

    Google Scholar 

  • Gischig VS, Moore JR, Evans KF, Amann F, Loew S (2011a) Thermomechanical forcing of deep rock slope deformation: 1. Conceptual study of a simplified slope. J Geophys Res Earth Surf 116:FO4010. doi:10.1029/2011JF002006

    Google Scholar 

  • Gischig VS, Moore JR, Evans KF, Amann F, Loew S (2011b) Thermomechanical forcing of deep rock slope deformation: 2. The Randa rock slope instability. J Geophys Res Earth Surf 116:FO4011. doi:10.1029/2011JF002007

    Google Scholar 

  • Gokceoglu C, Sezer E (2009) A statistical assessment on international landslide literature (1945–2008). Landslides 6:345–351. doi:10.1007/s10346-009-0166-3

    Article  Google Scholar 

  • Iai S (1989) Similitude for shaking table tests on soil-structure-fluid model in 1-g gravitational field. Soils Found 29(1):105–118. doi:10.3208/sandf1972.29.105

    Article  Google Scholar 

  • Iverson RM (2015) Scaling and design of landslide and debris-flow experiments. Geomorphology 244:9–20. doi:10.1016/j.geomorph.2015.02.033

    Article  Google Scholar 

  • Jaboyedoff M, Oppikofer T, Abellán A, Derron MH, Loye A, Metzger R, Pedrazzini A (2012) Use of LIDAR in landslide investigations: a review. Nat Hazards 61(1):5–28. doi:10.1007/s11069-010-9634-2

    Article  Google Scholar 

  • Jia GW, Zhan TLT, Chen YM, Fredlund DG (2009) Performance of a large-scale slope model subjected to rising and lowering water levels. Eng Geol 106:92–103. doi:10.1016/j.enggeo.2009.03.003

    Article  Google Scholar 

  • Kusaka T, Shikada M-a, Kawata Y (1993) Inference of landslide areas using spatial features and surface temperature of watersheds. SPIE Internaational Symposium on Optical Engineering and Photonics Aerospace and Remote Sensing, pp 241–246

  • Li DY, Yin KL (2011) Deformation characteristics of landslide with steplike deformation in the Three Gorges Reservoir. In: Electric technology and civil engineering (ICETCE 2011), pp 6517–6520. doi:10.1109/ICETCE.2011.5774665

  • Li CD, Tang HM, Hu XL, Li DM, Hu B (2009) Landslide prediction based on wavelet analysis and cusp catastrophe. J Earth Sci China 20:971–977. doi:10.1007/s12583-009-0082-4

    Article  Google Scholar 

  • Li DY, Yin KL, Leo C (2010) Analysis of Baishuihe landslide influenced by the effects of reservoir water and rainfall. Environ Earth Sci 60:677–687. doi:10.1007/s12665-009-0206-2

    Article  Google Scholar 

  • Lin ML, Wang KL (2006) Seismic slope behavior in a large-scale shaking table model test. Eng Geol 86:118–133. doi:10.1016/j.enggeo.2006.02.011

    Article  Google Scholar 

  • Liu YR, Guan FH, Yang Q, Yang RQ, Zhou WY (2013) Geomechanical model test for stability analysis of high arch dam based on small blocks masonry technique. Int J Rock Mech Min 61:231–243. doi:10.1016/j.ijrmms.2013.03.003

    Google Scholar 

  • Luo XQ, Sun H, Tham LG, Junaideen SM (2010) Landslide model test system and its application on the study of Shiliushubao landslide in Three Gorges Reservoir area. Soils Found 50:309–317. doi:10.3208/sandf.50.309

    Article  Google Scholar 

  • Ma JW, Tang HM, Hu XL, Bobet Antonio, Zhang M, Zhu TW, Song YJ, Eldin Ez, Mutasim AM (2016) Identification of causal factors for the Majiagou landslide using modern data mining methods. Landslides. doi:10.1007/s10346-016-0693-7

    Google Scholar 

  • Mei GX, Chen QM, Song LH (2009) Model for predicting displacement-dependent lateral earth pressure. Can Geotech J 46(8):969–975. doi:10.1139/T09-040

    Article  Google Scholar 

  • Moriwaki H, Inokuchi T, Hattanji T, Sassa K, Ochiai H, Wang G (2004) Failure processes in a full-scale landslide experiment using a rainfall simulator. Landslides 1:277–288. doi:10.1007/s10346-004-0034-0

    Article  Google Scholar 

  • Ochiai H, Okada Y, Furuya G, Okura Y, Matsui T, Sammori T, Terajima T, Sassa K (2004) A fluidized landslide on a natural slope by artificial rainfall. Landslides 1:211–219. doi:10.1007/s10346-004-0030-4

    Article  Google Scholar 

  • Rianna G, Pagano L, Urciuoli G (2014) Rainfall patterns triggering shallow flowslides in pyroclastic soils. Eng Geol 174:22–35. doi:10.1016/j.enggeo.2014.03.004

    Article  Google Scholar 

  • Shikada M, Kusaka T, Kawata Y, Miyakita K (1994) Extraction of characteristic properties in landslide areas using thematic map data and surface temperature. In: International geoscience and remote sensing symposium (IGARSS), better understanding of earth environment, vol 5, pp 103–105

  • Squarzoni C, Delacourt C, Allemand P (2003) Nine years of spatial and temporal evolution of the La Valette landslide observed by SAR interferometry. Eng Geol 68:53–66. doi:10.1016/S0013-7952(02)00198-9

    Article  Google Scholar 

  • Strozzi T, Farina P, Corsini A, Ambrosi C, Thüring M, Zilger J, Wiesmann A, Wegmüller U, Werner C (2005) Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides 2:193–201. doi:10.1007/s10346-005-0003-2

    Article  Google Scholar 

  • Sun YJ, Zhang D, Shi B, Tong HJ, Wei GQ, Wang X (2014) Distributed acquisition, characterization and process analysis of multi-field information in slopes. Eng Geol 182, Part A:49–62. doi:10.1016/j.enggeo.2014.08.025

    Article  Google Scholar 

  • Tang HM, Hu XL, Xu C, Li CD, Yong R, Wang LQ (2014a) A novel approach for determining landslide pushing force based on landslide-pile interactions. Eng Geol 182, Part A:15–24. doi:10.1016/j.enggeo.2014.07.024

    Article  Google Scholar 

  • Tang HM, Li CD, Hu XL, Su AJ, Wang LQ, Wu YP, Criss R, Xiong CR, Li YA (2014b) Evolution characteristics of the Huangtupo landslide based on in situ tunneling and monitoring. Landslides 12:511–521. doi:10.1007/s10346-014-0500-2

    Google Scholar 

  • Tarchi D, Casagli N, Fanti R et al (2003) Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Eng Geol 68:15–30. doi:10.1016/S0013-7952(02)00196-5

    Article  Google Scholar 

  • Thielicke W, Stamhuis EJ (2014) PIVlab-time-resolved digital particle image velocimetry tool for MATLAB. http://pivlab.blogspot.gr/

  • Travelletti J, Oppikofer T, Delacourt C, Malet J, Jaboyedoff M (2008) Monitoring landslide displacements during a controlled rain experiment using a long-range terrestrial laser scanning (TLS). Int Arch Photogramm Remote Sens 37(Part B5):485–490

    Google Scholar 

  • van Westen CJ, Lulie Getahun F (2003) Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models. Geomorphology 54:77–89. doi:10.1016/S0169-555X(03)00057-6

    Article  Google Scholar 

  • Walstra J, Chandler J, Dixon N, Dijkstra T (2004) Time for change-quantifying landslide evolution using historical aerial photographs and modern photogrammetric methods. Int Arch Photogramm Remote Sens Spat In Sci, vol 34 (Part XXX). Commission 4:475–481

  • Wang KL, Lin ML (2011) Initiation and displacement of landslide induced by earthquake-a study of shaking table model slope test. Eng Geol 122:106–114. doi:10.1016/j.enggeo.2011.04.008

    Article  Google Scholar 

  • Wang GQ, Joyce J, Phillips D, Shrestha R, Carter W (2013) Delineating and defining the boundaries of an active landslide in the rainforest of Puerto Rico using a combination of airborne and terrestrial LIDAR data. Landslides 10:503–513. doi:10.1007/s10346-013-0400-x

    Article  Google Scholar 

  • Wu LX, Cui CY, Geng NG, Wang JZ (2000) Remote sensing rock mechanics (RSRM) and associated experimental studies. Int J Rock Mech Min 37:879–888. doi:10.1016/S1365-1609(99)00066-0

    Article  Google Scholar 

  • Wu LX, Liu SJ, Wu YH, Wu HP (2002) Changes in infrared radiation with rock deformation. Int J Rock Mech Min 39:825–831. doi:10.1016/S1365-1609(02)00049-7

    Article  Google Scholar 

  • Wu LX, Liu SJ, Wu YH, Wang CY (2006a) Precursors for rock fracturing and failure—Part I: IRR image abnormalities. Int J Rock Mech Min 43:473–482. doi:10.1016/j.ijrmms.2005.09.002

    Article  Google Scholar 

  • Wu LX, Liu SJ, Wu YH, Wang CY (2006b) Precursors for rock fracturing and failure—Part II: IRR T-Curve abnormalities. Int J Rock Mech Min 43:483–493. doi:10.1016/j.ijrmms.2005.09.001

    Article  Google Scholar 

  • Zhang Z, Luo X, Wu J (2009) Study on the possible failure mode and mechanism of the Xietan landslide when exposed to water level fluctuation. In: Wang F, Li T (eds) Landslide disaster mitigation in Three Gorges Reservoir. Environmental Science and Engineering. Springer, Berlin, pp 375–385. doi:10.1007/978-3-642-00132-1_16

    Chapter  Google Scholar 

  • Zhang JM, Shamoto Y, Tokimatsu K (1998) Evaluation of earth pressure under any lateral deformation. Soils Found 38:15–33. doi:10.3208/sandf.38.15

    Article  Google Scholar 

  • Zhou CM, Shao W, van Westen CJ (2014) Comparing two methods to estimate lateral force acting on stabilizing piles for a landslide in the Three Gorges Reservoir, China. Eng Geol 173:41–53. doi:10.1016/j.enggeo.2014.02.004

    Article  Google Scholar 

Download references

Acknowledgments

Junwei Ma is grateful to the China Scholarship Council for providing a scholarship for this research, which was conducted while he served as a Visiting Research Scholar at Purdue University. This study was financially supported by the National Basic Research Program “973” Project of the Ministry of Science and the Technology of the People’s Republic of China (2011CB710604 & 2011CB710606), the Key National Natural Science Foundation of China (41230637), National Natural Science Foundation of China (41572279, 41272305 and 41102195), China Postdoctoral Science Foundation (Grant Nos. 2012M521500 and 2014T70758), and Hubei Provincial Natural Science Foundation of China (Grant No. 2014CFB901). All support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiming Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Tang, H., Hu, X. et al. Model testing of the spatial–temporal evolution of a landslide failure. Bull Eng Geol Environ 76, 323–339 (2017). https://doi.org/10.1007/s10064-016-0884-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-016-0884-4

Keywords

Navigation