Skip to main content

Advertisement

Log in

Identification of causal factors for the Majiagou landslide using modern data mining methods

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

In this study, a data mining approach is proposed to investigate the hydrological causes of the Majiagou landslide, located in the Three Gorges Reservoir in China. It is possible to determine the cause-and-effect relationships between hydrological parameters and landslide movement. The data mining approach consists of two steps: first, hydrological indicators and landslide movements are discretized using the two-step cluster analysis; second, the association rule mining with the Apriori algorithm is employed to identify the contribution of each hydrological parameter to landslide movement. The results obtained suggest that deformation and later failure occurred first at the toe of the landslide and progressed upslope due to rising water level in the reservoir, prolonged heavy rainfall, and rapid drawdown in the reservoir. The proposed novel use of field data and data mining has the potential for providing procedures and solutions for an effective interpretation of landslide monitoring data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agrawal R, Imieliski T, Swami A (1993) Mining association rules between sets of items in large databases. In Proc. 1993 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'93), Washington, DC, pp. 207–216. doi:10.1145/170035.170072

  • Althuwaynee OF, Pradhan B, Park HJ, Lee JH (2014) A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides 11:1063–1078. doi:10.1007/s10346-014-0466-0

    Article  Google Scholar 

  • Cheng CW, Lin CC, Leu SS (2010) Use of association rules to explore cause-effect relationships in occupational accidents in the Taiwan construction industry. Saf sci 48:436–444. doi:10.1016/j.ssci.2009.12.005

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Special report 247: landslides investigation and mitigation. Transportation Research Board, US National Research Council, Washington, pp 36–75

    Google Scholar 

  • Dai FC, Deng JH, Tham LG, Law KT, Lee CF (2004) A large landslide in Zigui County, Three Gorges area. Can Geotech J 41(6):1233–1240. doi:10.1139/t04-049

    Article  Google Scholar 

  • Du J, Yin KL, Lacasse S (2013) Displacement prediction in colluvial landslides, Three Gorges Reservoir, China. Landslides 10:203–218. doi:10.1007/s10346-012-0326-8

    Article  Google Scholar 

  • Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66:327–343. doi:10.1016/j.geomorph.2004.09.025

    Article  Google Scholar 

  • Falaschi F, Giacomelli F, Federici PR, Puccinelli A, D’Amato Avanzi G, Pochini A, Ribolini A (2009) Logistic regression versus artificial neural networks: landslide susceptibility evaluation in a sample area of the Serchio River valley, Italy. Nat Hazards 50(3):551–569. doi:10.1007/s11069-009-9356-5

    Article  Google Scholar 

  • Gao YL, Wang HD, Li G, Zhang JY, Yang XY (2009) Construction and application of a real-time monitoring system for landslides. In: Wang FW, Li TL (eds) Landslide disaster mitigation in Three Gorges Reservoir. Springer, China, pp 497–517. doi:10.1007/978-3-642-00132-1_24

    Chapter  Google Scholar 

  • Genevois R, Ghirotti M (2005) The 1963 Vaiont landslide. Giornale di Geologia Applicata 1:41–52. doi:10.1474/GGA.2005-01.0-05.0005

    Google Scholar 

  • Griffiths JS (1999) Proving the occurrence and cause of a landslide in a legal context. B Eng Geol Environ 58:75–85. doi:10.1007/s100640050070

    Article  Google Scholar 

  • Han EH, Karypis G, Kumar V (1997) Min-Apriori: an algorithm for finding association rules in data with continuous attributes. Technical report, Department of Computer Science, University of Minnesota, Minneapolis, MN

  • Hu XL, Zhang M, Sun MJ, Huang KX, Song YJ (2013) Deformation characteristics and failure mode of the Zhujiadian landslide in the Three Gorges Reservoir, China. B Eng Geol Environ 74:1–12. doi:10.1007/s10064-013-0552-x

    Article  Google Scholar 

  • Huang HF, Yi W, Lu SQ, Yi QL, Zhang GD (2014) Use of monitoring data to interpret active landslide movements and hydrological triggers in Three Gorges Reservoir. J Perform Constr Fac: C4014005. doi:10.1061/(ASCE)CF.1943-5509.0000682

  • Hui L, Shih CC, Keh HC, Yu PY, Cheng YC, Huang NC (2014) The application of association rules in clinical disease: the relationship between recovery after operation of endovascular aneurysm repairing and chronic. In: Peng WC, Wang HX, Bailey J, Tseng VS, Ho TB, Zhou ZH, Chen ALP (eds) Trends and applications in knowledge discovery and data mining. Springer, pp 712–721. doi:10.1007/978-3-319-13186-3_63

  • Jian WX, Wang ZJ, Yin KL (2009) Mechanism of the Anlesi landslide in the Three Gorges Reservoir, China. Eng Geol 108:86–95. doi:10.1016/j.enggeo.2009.06.017

    Article  Google Scholar 

  • Karabatak M, Ince MC (2009) An expert system for detection of breast cancer based on association rules and neural network. Expert Syst Appl 36(2, Part2):3465–3469. doi:10.1016/j.eswa.2008.02.064

    Article  Google Scholar 

  • Liang WJ, Zhuang DF, Jiang D, Pan JJ, Ren HY (2012) Assessment of debris flow hazards using a Bayesian network. Geomorphology 171–172:94–100. doi:10.1016/j.geomorph.2012.05.008

    Article  Google Scholar 

  • Liao CW, Perng YH (2008) Data mining for occupational injuries in the Taiwan construction industry. Saf Sci 46:1091–1102. doi:10.1016/j.ssci.2007.04.007

    Article  Google Scholar 

  • Michailidou C, Maheras P, Arseni-Papadimititriou A, Kolyva-Machera F, Anagnostopoulou C (2009) A study of weather types at Athens and Thessaloniki and their relationship to circulation types for the cold-wet period, part I: two-step cluster analysis. Theor Appl Climatol 97:163–177. doi:10.1007/s00704-008-0057-x

    Article  Google Scholar 

  • Nahar J, Imam T, Tickle KS, Chen Y-PP (2013) Association rule mining to detect factors which contribute to heart disease in males and females. Expert Syst Appl 40(4):1086–1093. doi:10.1016/j.eswa.2012.08.028

    Article  Google Scholar 

  • Nefeslioglu HA, Sezer E, Gokceoglu C, Bozkir AS, Duman TY (2010) Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey. Math Probl Eng. doi:10.1155/2010/901095

    Google Scholar 

  • Ouyang Y, Luo SM, Cui LH, Wang Q, Zhang JE (2011) Estimation of real-time n load in surface water using dynamic data-driven application system. Ecol Eng 37:616–621. doi:10.1016/j.ecoleng.2010.12.023

    Article  Google Scholar 

  • Popescu ME (1994) A suggested method for reporting landslide causes. Bull Int Assoc Eng Geol 50:71–74. doi:10.1007/BF02594958

    Article  Google Scholar 

  • Pourghasemi HR, Goli Jirandeh A, Pradhan B, Xu C, Gokceoglu C (2013) Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. J Earth Syst Sci 122:349–369. doi:10.1007/s12040-013-0282-2

    Article  Google Scholar 

  • Saito H, Nakayama D, Matsuyama H (2009) Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi Mountains, Japan. Geomorphology 109:108–121. doi:10.1016/j.geomorph.2009.02.026

    Article  Google Scholar 

  • Salciarini D, Godt JW, Savage WZ, Conversini P, Baum RL, Michael JA (2006) Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria region of central Italy. Landslides 3:181–194. doi:10.1007/s10346-006-0037-0

    Article  Google Scholar 

  • Satish SM, Bharadhwaj S (2010) Information search behaviour among new car buyers: a two-step cluster analysis. IIMB Manag Rev 22(1-2):5–15. doi:10.1016/j.iimb.2010.03.005

    Article  Google Scholar 

  • Shi B, Jiang HT, Liu ZB, Fang HY (2002) Engineering geological characteristics of expansive soils in China. Eng Geol 67:63–71. doi:10.1016/S0013-7952(02)00145-X

    Article  Google Scholar 

  • Song YQ, Gong JH, Gao S, Wang DC, Cui TJ, Li Y, Wei BQ (2012) Susceptibility assessment of earthquake-induced landslides using Bayesian network: a case study in Beichuan, China. Comput Geosci 42:189–199. doi:10.1016/j.cageo.2011.09.011

    Article  Google Scholar 

  • SPSS (2012) IBM SPSS modeler 15 algorithms guide. Chicago, USA

  • Terzaghi K (1950) Mechanisms of landslides. In: Application of geology to engineering practice, Geological Society of America, Berkey volume, pp 83–123

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick OB (2012) Landslide susceptibility assessment in the Hoa Binh province of Vietnam: a comparison of the Levenberg-Marquardt and Bayesian regularized neural networks. Geomorphology 171–172:12–29. doi:10.1016/j.geomorph.2012.04.023

    Article  Google Scholar 

  • Tsai F, Lai JS, Chen WW, Lin TH (2013) Analysis of topographic and vegetative factors with data mining for landslide verification. Ecol Eng 61(Part C):669–677

    Article  Google Scholar 

  • Wang FW, Zhang YM, Huo ZT, Peng XM, Araiba K, Wang GH (2008) Movement of the Shuping landslide in the first four years after the initial impoundment of the Three Gorges Dam Reservoir, China. Landslides 5:321–329. doi:10.1007/s10346-008-0128-1

    Article  Google Scholar 

  • Wang XM, Niu RQ (2010) Landslide intelligent prediction using object-oriented method. Soil Dyn Earthq Eng 30:1478–1486. doi:10.1016/j.soildyn.2010.06.017

    Article  Google Scholar 

  • Wen BP, Wang SJ, Wang EZ, Zhang JM (2004) Characteristics of rapid giant landslides in China. Landslides 1:247–261. doi:10.1007/s10346-004-0022-4

    Article  Google Scholar 

  • Witten IH, Frank E (2011) Data mining: practical machine learning tools and techniques, 3rd edn. Morgan Kaufmann, Burlington

    Google Scholar 

  • Xia M, Ren GM, Ma XL (2013) Deformation and mechanism of landslide influenced by the effects of reservoir water and rainfall, Three Gorges, China. Nat Hazards 68:467–482. doi:10.1007/s11069-013-0634-x

    Article  Google Scholar 

  • Yin YP, Wang HD, Gao YL, Li XC (2010) Real-time monitoring and early warning of landslides at relocated Wushan town, the Three Gorges Reservoir, China. Landslides 7:339–349. doi:10.1007/s10346-010-0220-1

    Article  Google Scholar 

Download references

Acknowledgments

The author Junwei Ma thanks the China Scholarship Council for providing a scholarship for the research described in this paper, which was conducted as a Visiting Research Scholar at Purdue University. This study was financially supported by the National Basic Research Program “973” Project of the Ministry of Science and Technology of the People’s Republic of China (2011CB710604 and 2011CB710606), Key National Natural Science Foundation of China (41230637), National Natural Science Foundation of China (41572279, 41272305 and 41102195), China Postdoctoral Science Foundation (Grant Nos. 2012M521500 and 2014T70758), and Hubei Provincial Natural Science Foundation of China (Grant No. 2014CFB901). All supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiming Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Tang, H., Hu, X. et al. Identification of causal factors for the Majiagou landslide using modern data mining methods. Landslides 14, 311–322 (2017). https://doi.org/10.1007/s10346-016-0693-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-016-0693-7

Keywords

Navigation